Welcome to The Natural History Museum repository

The Natural History Museum is an international leader in the study of the natural world. Our science describes the diversity of nature, promotes an understanding of its past, and supports the anticipation and management of the impact of human activity on the environment.

The Museum's repository provides free access to publications produced by more than 300 scientists working here. Researchers at the Museum study a diverse range of issues, including threats to Earth's biodiversity, the maintenance of delicate ecosystems, environmental pollution and disease. The accessible repository showcases this broad research output.

The repository was launched in 2016 with an initially modest number of journal publications in its database. It now includes book chapters and blogs from Museum scientists.

Select a community to browse its collections.

  • Quantitative photography for rapid, reliable measurement of marine macro‐plastic pollution

    Razzell Hollis, Joseph; Henderson, Gabrielle; Lavers, Jennifer; Rea, Edward; Komyakova, Valeriya; Bond, AL (Wiley, 2024-01-09)
    Abstract Plastics are now ubiquitous in the environment and have been studied in wildlife and in ecosystems for more than 50 years. Measurement of size, shape and colour data for individual fragments of plastic is labour‐intensive, unreliable and prone to observer bias, particularly when it comes to assessment of colour, which relies on arbitrary and inconsistently defined colour categorisations. There is a clear need for a standard method for data collection on plastic pollution, particularly one that can be readily automated given the number of samples involved. This study describes a new method for standardised photography of marine plastics in the 1–100 mm size range (meso‐ and macro‐plastics), including colour correction to account for any image‐to‐image variation in lighting that may impact colour reproduction or apparent brightness. Automated image analysis is then applied to detect individual fragments of plastic for quantitative measurement of size, shape, and colour. The method was tested on 3793 fragments of debris ingested by Flesh‐footed Shearwaters (Ardenna carneipes) on Lord Howe Island, Australia, and compare results from photos taken in two separate locations using different equipment. Photos were acquired of up to 250 fragments at a time with a spatial resolution of 70 μm/pixel and were colour‐corrected using a reference chart to ensure accurate reproduction of colour. The automated image analysis pipeline was found to have a 98% success rate at detecting fragments, and the different size and shape parameters that can be outputted by the pipeline were compared in terms of usefulness. The evidence shown in this study should strongly encourage the uptake of this method for cataloguing macro‐scale plastic pollution, as it provides substantially higher quality data with accurate, reliable measurements of size, shape and colour for individual plastics that can be readily compared between disparate datasets.
  • Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Eisenhauer, Nico; Bender, S Franz; Calderón‐Sanou, Irene; de Vries, Franciska T; Lembrechts, Jonas J; Thuiller, Wilfried; Wall, Diana H; Zeiss, Romy; Bahram, Mohammad; Beugnon, Rémy; et al. (Wiley, 2022-11-11)
    Abstract: Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding.
  • Two new sympatric species of the pirate spider genus Ero C.L. Koch, 1836 from the cloud forest of Saint Helena Island, South Atlantic Ocean (Araneae: Mimetidae)

    Sherwood, Danniella; Henrard, Arnaud; Peters, Martina; Price, BW; Hall, Andie; White, Oliver W; Grignet, Virginie; Wilkins, Vicky (Museum National D'Histoire Naturelle, 2024-02-02)
    A remarkable morphologically and genetically distinct species of the genus Ero C.L. Koch, 1836 is described based on both sexes from the cloud forest of the island of Saint Helena: Ero lizae sp. nov. Another new species, Ero natashae sp. nov., is also described on the basis of morphological differences in the male and female genitalia. Both species were initially reported a single species, Ero aphana (Walckenaer, 1802), from the island by Unzicker (1977).
  • Unprecedented frequency of mitochondrial introns in colonial bilaterians

    Jenkins, Helen Louise; Graham, Rachael; Porter, Joanne Sara; Vieira, Leandro Manzoni; de Almeida, Ana Carolina Sousa; Hall, Andrea; O’Dea, Aaron; Coppard, Simon Edward; Waeschenbach, A (Springer Science and Business Media LLC, 2022-06-28)
    Abstract Animal mitogenomes are typically devoid of introns. Here, we report the largest number of mitochondrial introns ever recorded from bilaterian animals. Mitochondrial introns were identified for the first time from the phylum Bryozoa. They were found in four species from three families (Order Cheilostomatida). A total of eight introns were found in the complete mitogenome of Exechonella vieirai, and five, 17 and 18 introns were found in the partial mitogenomes of Parantropora penelope, Discoporella cookae and Cupuladria biporosa, respectively. Intron-encoded protein domains reverse transcriptase and intron maturase (RVT-IM) were identified in all species. Introns in E. vieirai and P. penelope had conserved Group II intron ribozyme domains V and VI. Conserved domains were lacking from introns in D. cookae and C. biporosa, preventing their further categorization. Putative origins of metazoan introns were explored in a phylogenetic context, using an up-to-date alignment of mitochondrial RVT-IM domains. Results confirmed previous findings of multiple origins of annelid, placozoan and sponge RVT-IM domains and provided evidence for common intron donor sources across metazoan phyla. Our results corroborate growing evidence that some metazoans with regenerative abilities (i.e. placozoans, sponges, annelids and bryozoans) are susceptible to intron integration, most likely via horizontal gene transfer.
  • Evaluation of genome skimming to detect and characterise human and livestock helminths

    PAPAIAKOVOU, MARINA; Fraija-Fernández, Natalia; James, Katherine; Briscoe, AG; Hall, Andie; Jenkins, Timothy P; Dunn, Julia; Levecke, Bruno; Mekonnen, Zeleke; Cools, Piet; et al. (Elsevier BV, 2023-01-11)
    The identification of gastrointestinal helminth infections of humans and livestock almost exclusively relies on the detection of eggs or larvae in faeces, followed by manual counting and morphological characterisation to differentiate species using microscopy-based techniques. However, molecular approaches based on the detection and quantification of parasite DNA are becoming more prevalent, increasing the sensitivity, specificity and throughput of diagnostic assays. High-throughput sequencing, from single PCR targets through to the analysis of whole genomes, offers significant promise towards providing information-rich data that may add value beyond traditional and conventional molecular approaches; however, thus far, its utility has not been fully explored to detect helminths in faecal samples. In this study, low-depth whole genome sequencing, i.e. genome skimming, has been applied to detect and characterise helminth diversity in a set of helminth-infected human and livestock faecal material. The strengths and limitations of this approach are evaluated using three methods to characterise and differentiate metagenomic sequencing data based on (i) mapping to whole mitochondrial genomes, (ii) whole genome assemblies, and (iii) a comprehensive internal transcribed spacer 2 (ITS2) database, together with validation using quantitative PCR (qPCR). Our analyses suggest that genome skimming can successfully identify most single and multi-species infections reported by qPCR and can provide sufficient coverage within some samples to resolve consensus mitochondrial genomes, thus facilitating phylogenetic analyses of selected genera, e.g. Ascaris spp. Key to this approach is both the availability and integrity of helminth reference genomes, some of which are currently contaminated with bacterial and host sequences. The success of genome skimming of faecal DNA is dependent on the availability of vouchered sequences of helminths spanning both taxonomic and geographic diversity, together with methods to detect or amplify minute quantities of parasite nucleic acids in mixed samples.

View more