Welcome to The Natural History Museum repository

The Natural History Museum is an international leader in the study of the natural world. Our science describes the diversity of nature, promotes an understanding of its past, and supports the anticipation and management of the impact of human activity on the environment.

The Museum's repository provides free access to publications produced by more than 300 scientists working here. Researchers at the Museum study a diverse range of issues, including threats to Earth's biodiversity, the maintenance of delicate ecosystems, environmental pollution and disease. The accessible repository showcases this broad research output.

The repository was launched in 2016 with an initially modest number of journal publications in its database. It now includes book chapters and blogs from Museum scientists.

Select a community to browse its collections.

  • Revision of the World Species of Megaphragma Timberlake (Hymenoptera: Trichogrammatidae)

    Polaszek, Andrew; Fusu, Lucian; Viggiani, Gennaro; Hall, Andie; Hanson, Paul; Polilov, Alexey A (MDPI AG, 2022-06-20)
    Megaphragma species are important models for basic organismal research, and many are potential biological control agents. We present the first extensive revision of species of the genus Megaphragma based on morphological and molecular data. Our revision includes all previously described species, 6 of which are synonymized, and 22 of which are described here as new. We also provide the first key to all species of the genus and reconstruct their phylogeny based on 28S and CO1 molecular markers. The following species are synonymized with M. longiciliatum Subba Rao: M. aligarhensis Yousuf and Shafee syn. nov.; M. amalphitanum Viggiani syn. nov.; M. decochaetum Lin syn. nov.; M. magniclava Yousuf and Shafee syn. nov.; M. shimalianum Hayat syn. nov. M. anomalifuniculi Yuan and Lou syn. nov. is synonymized with M. polychaetum Lin. The following species are described as new: M. antecessor Polaszek and Fusu sp. nov.; M. breviclavum Polaszek and Fusu sp. nov.; M. chienleei Polaszek and Fusu sp. nov.; M. cockerilli Polaszek and Fusu sp. nov.; M. digitatum Polaszek and Fusu sp. nov.; M. fanenitrakely Polaszek and Fusu sp. nov.; M. funiculatum Fusu, Polaszek, and Viggiani sp. nov.; M. giraulti Viggiani, Fusu, and Polaszek sp. nov.; M. hansoni Polaszek, Fusu, and Viggiani sp. nov.; M. kinuthiae Polaszek, Fusu, and Viggiani sp. nov.; M. liui Polaszek and Fusu sp. nov.; M. momookherjeeae Polaszek and Fusu sp. nov.; M. nowickii Polaszek, Fusu, and Viggiani sp. nov.; M. noyesi Polaszek and Fusu sp. nov.; M. pintoi Viggiani sp. nov.; M. polilovi Polaszek, Fusu, and Viggiani sp. nov.; M. rivelloi Viggiani sp. nov.; M. tamoi Polaszek, Fusu, and Viggiani sp. nov.; M. tridens Fusu, and Polaszek sp. nov.; M. uniclavum Polaszek and Fusu sp. nov.; M. vanlentereni Polaszek and Fusu sp. nov.; M. viggianii Fusu, Polaszek, and Polilov sp. nov.
  • Far from a distraction: Plastic pollution and the planetary emergency

    Lavers, Jennifer L; Bond, AL; Rolsky, Charles (Elsevier BV, 2022-07-04)
    Pollution of the environment with plastics has garnered significant public attention, but the topic has also been the focus of controversy, including assertions that resources are better spent on other topics, such as global warming. Here, we argue that plastic pollution and climate change are fundamentally linked, from the extraction of fossil fuels to the production of plastics, and eventual disposal. We demonstrate how plastics research and funding currently lag significantly behind that of climate change and conclude by advocating for a more integrated approach to addressing pressing conservation issues in the time of a planetary emergency.
  • Cryptic population decrease due to invasive species predation in a long‐lived seabird supports need for eradication

    Oppel, Steffen; Clark, Bethany L; Risi, Michelle M; Horswill, Catharine; Converse, Sarah J; Jones, Christopher W; Osborne, Alexis M; Stevens, Kim; Perold, Vonica; Bond, AL; et al. (Wiley, 2022-06-18)
    SUMMARY 1. Invasive species are one of the greatest drivers of biodiversity loss worldwide, but the eradication of invasive species from islands is a highly efficient management strategy. Because eradication operations require large financial investments, uncertainty over the magnitude of impacts of both invasive species and their removal can impede the willingness of decision makers to invest in eradication. Such uncertainty is prevalent for long-lived species that display an inherent lag between life stages affected by invasive species and those used for population status assessments. 2. Albatrosses are among the longest-living bird species and are threatened on land by invasive species and at sea by industrial fisheries. As in many seabird species, usually only a segment of the population (breeding adults) is used for status assessments, making it difficult to assess their population trends and the potential benefit of conservation action, such as the management of predatory invasive species. 3. We used population monitoring and mark-recapture data to estimate the past population trajectory of the Critically Endangered Tristan Albatross (Diomedea dabbenena) by accounting for unobservable birds at sea in an integrated population model. We then projected the future population trajectory for scenarios with or without predation by invasive house mice (Mus musculus) on their main site, Gough Island. 4. The adult breeding population remained stable between 2004 and 2021, but breeding success was low (31%) and our model indicated that the total population (including unobservable immature birds) decreased from a median estimate of 9795 to 7752 birds. Eradicating invasive mice leading to a two-fold increase in breeding success would result in a 1.8–7.6 times higher albatross population by 2050 (median estimate 10 352 individuals) than without this intervention. 5. Low reproductive output for long-lived species may lead to a cryptic population decrease, which can be obscured from readily available counts of breeding pairs by changes in the breeding population. Mouse eradication is necessary to revert the ongoing population decrease, even if this decrease is not yet apparent in the breeding population size.
  • The influence of seabirds on their breeding, roosting and nesting grounds: A systematic review and meta‐analysis

    Grant, Megan L; Bond, AL; Lavers, Jennifer L (Wiley, 2022-06)
    Seabird species world-wide are integral to both marine and terrestrial environments, connecting the two systems by transporting vast quantities of marine-derived nutrients and pollutants to terrestrial breeding, roosting and nesting grounds via the deposition of guano and other allochthonous inputs (e.g. eggs, feathers). We conducted a systematic review and meta-analysis and provide insight into what types of nutrients and pollutants seabirds are transporting, the influence these subsidies are having on recipient environments, with a particular focus on soil, and what may happen if seabird populations decline. The addition of guano to colony soils increased nutrient levels compared to control soils for all seabirds studied, with cascading positive effects observed across a range of habitats. Deposited guano sometimes led to negative impacts, such as guanotrophication, or guano-induced eutrophication, which was often observed where there was an excess of guano or in areas with high seabird densities. While the literature describing nutrients transported by seabirds is extensive, literature regarding pollutant transfer is comparatively limited, with a focus on toxic and bioaccumulative metals. Research on persistent organic pollutants and plastics transported by seabirds is likely to increase in coming years. Studies were limited geographically, with hotspots of research activity in a few locations, but data were lacking from large regions around the world. Studies were also limited to seabird species listed as Least Concern on the IUCN Red List. As seabird populations are impacted by multiple threats and steep declines have been observed for many species world-wide, gaps in the literature are particularly concerning. The loss of seabirds will impact nutrient cycling at localized levels and potentially on a global scale as well, yet it is unknown what may truly happen to areas that rely on seabirds if these populations disappear.
  • Analytical and Clinical Assessment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular Diagnosis of Urogenital Schistosomiasis

    Archer, John; Barksby, Rebecca; Pennance, T; Rostron, Penelope; Bakar, Faki; Knopp, Stefanie; Allan, F; Kabole, Fatma; Ali, Said M; Ame, Shaali M; et al. (MDPI AG, 2020-09-11)
    Accurate diagnosis of urogenital schistosomiasis is crucial for disease surveillance and control. Routine diagnostic methods, however, lack sensitivity when assessing patients with low levels of infection still able to maintain pathogen transmission. Therefore, there is a need for highly sensitive diagnostic tools that can be used at the point-of-care in endemic areas. Recombinase polymerase amplification (RPA) is a rapid and sensitive diagnostic tool that has been used to diagnose several pathogens at the point-of-care. Here, the analytical performance of a previously developed RPA assay (RT-ShDra1-RPA) targeting the Schistosoma haematobium Dra1 genomic region was assessed using commercially synthesised S. haematobium Dra1 copies and laboratory-prepared samples spiked with S. haematobium eggs. Clinical performance was also assessed by comparing diagnostic outcomes with that of a reference diagnostic standard, urine-egg microscopy. The RT-ShDra1-RPA was able to detect 1 × 101 copies of commercially synthesised Dra1 DNA as well as one S. haematobium egg within laboratory-spiked ddH2O samples. When compared with urine-egg microscopy, the overall sensitivity and specificity of the RT-ShDra1-RPA assay was 93.7% (±88.7–96.9) and 100% (±69.1–100), respectively. Positive and negative predictive values were 100% (±97.5–100) and 50% (±27.2–72.8), respectively. The RT-ShDra1-RPA therefore shows promise as a rapid and highly sensitive diagnostic tool able to diagnose urogenital schistosomiasis at the point-of-care.

View more