Welcome to The Natural History Museum repository

The Natural History Museum is an international leader in the study of the natural world. Our science describes the diversity of nature, promotes an understanding of its past, and supports the anticipation and management of the impact of human activity on the environment.

The Museum's repository provides free access to publications produced by more than 300 scientists working here. Researchers at the Museum study a diverse range of issues, including threats to Earth's biodiversity, the maintenance of delicate ecosystems, environmental pollution and disease. The accessible repository showcases this broad research output.

The repository was launched in 2016 with an initially modest number of journal publications in its database. It now includes book chapters and blogs from Museum scientists.

Select a community to browse its collections.

  • Evolution of reproductive strategies in the species-rich land snail subfamily Phaedusinae (Stylommatophora: Clausiliidae)

    Mamos, Tomasz; Uit de Weerd, Dennis; von Oheimb, Parm Viktor; Sulikowska-Drozd, Anna (Elsevier, 2020-12-28)
    Most of the present knowledge on animal reproductive mode evolution, and possible factors driving transitions between oviparity and viviparity is based on studies on vertebrates. The species rich door snail (Clausiliidae) subfamily Phaedusinae represents a suitable and unique model for further examining parity evolution, as three different strategies, oviparity, viviparity, and the intermediate mode of embryo-retention, occur in this group. The present study reconstructs the evolution of reproductive strategies in Phaedusinae based on time-calibrated molecular phylogenetics, reproductive mode examinations and ancestral state reconstruction. Our phylogenetic analysis employing multiple mitochondrial and nuclear markers identified a well-supported clade (including the tribes Phaedusini and Serrulinini) that contains species exhibiting various reproductive strategies. This clade evolved from an oviparous most recent common ancestor according to our reconstruction. All non-oviparous taxa are confined to a highly supported subclade, coinciding with the tribe Phaedusini. Both oviparity and viviparity occur frequently in different lineages of this subclade that are not closely related. During Phaedusini diversification, multiple transitions in reproductive strategy must have taken place, which could have been promoted by a high fitness of embryo-retaining species. The evolutionary success of this group might result from the maintenance of various strategies.
  • Using natural history collections to investigate changes in pangolin (Pholidota: Manidae) geographic ranges through time

    Buckingham, Emily; Curry, Jake; Emogor, Charles; Tomsett, Louise; Cooper, N (PeerJ, 2021-02-11)
    Pangolins, often considered the world’s most trafficked wild mammals, have continued to experience rapid declines across Asia and Africa. All eight species are classed as either Vulnerable, Endangered or Critically Endangered by the International Union for Conservation of Nature (IUCN) Red List. Alongside habitat loss, they are threatened mainly by poaching and/or legal hunting to meet the growing consumer demand for their meat and keratinous scales. Species threat assessments heavily rely on changes in species distributions which are usually expensive and difficult to monitor, especially for rare and cryptic species like pangolins. Furthermore, recent assessments of the threats to pangolins focus on characterising their trade using seizure data which provide limited insights into the true extent of global pangolin declines. As the consequences of habitat modifications and poaching/hunting on species continues to become apparent, it is crucial that we frequently update our understanding of how species distributions change through time to allow effective identification of geographic regions that are in need of urgent conservation actions. Here we show how georeferencing pangolin specimens from natural history collections can reveal how their distributions are changing over time, by comparing overlap between specimen localities and current area of habitat maps derived from IUCN range maps. We found significant correlations in percentage area overlap between species, continent, IUCN Red List status and collection year, but not ecology (terrestrial or arboreal/semi-arboreal). Human population density (widely considered to be an indication of trafficking pressure) and changes in primary forest cover, were weakly correlated with percentage overlap. Our results do not suggest a single mechanism for differences among historical distributions and present-day ranges, but rather show that multiple explanatory factors must be considered when researching pangolin population declines as variations among species influence range fluctuations. We also demonstrate how natural history collections can provide temporal information on distributions and discuss the limitations of collecting and using historical data.
  • Dinosaur diversification rates were not in decline prior to the K-Pg boundary

    Bonsor, Joseph; Barrett, PM; Raven, Tom; Cooper, N (The Royal Society, 2020-11-18)
    Determining the tempo and mode of non-avian dinosaur extinction is one of the most contentious issues in palaeobiology. Extensive disagreements remain over whether their extinction was catastrophic and geologically instantaneous or the culmination of long-term evolutionary trends. These conflicts have arisen due to numerous hierarchical sampling biases in the fossil record and differences in analytical methodology, with some studies identifying long-term declines in dinosaur richness prior to the Cretaceous–Palaeogene (K-Pg) boundary and others proposing continued diversification. Here, we use Bayesian phylogenetic generalized linear mixed models to assess the fit of 12 dinosaur phylogenies to three speciation models (null, slowdown to asymptote, downturn). We do not find strong support for the downturn model in our analyses, which suggests that dinosaur speciation rates were not in terminal decline prior to the K-Pg boundary and that the clade was still capable of generating new taxa. Nevertheless, we advocate caution in interpreting the results of such models, as they may not accurately reflect the complexities of the underlying data. Indeed, current phylogenetic methods may not provide the best test for hypotheses of dinosaur extinction; the collection of more dinosaur occurrence data will be essential to test these ideas further.
  • Novel Virus Discovery and Genome Reconstruction from Field RNA Samples Reveals Highly Divergent Viruses in Dipteran Hosts

    Cook, Shelley; Chung, Betty Y-W; Bass, David; Moureau, Gregory; Tang, Shuoya; McAlister, Erica; Culverwell, CL; Glücksman, Edvard; Wang, Hui; Brown, T David K; et al. (Public Library of Science (PLoS), 2013-11-18)
    We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.
  • Aquatic Habits and Niche Partitioning in the Extraordinarily Long-Necked Triassic Reptile Tanystropheus

    Spiekman, Stephan NF; Neenan, James M; Fraser, Nicholas C; Fernandez, Vincent; Rieppel, Olivier; Nosotti, Stefania; Scheyer, Torsten M (Elsevier BV, 2020-08-06)
    Tanystropheus longobardicus is one of the most remarkable and iconic Triassic reptiles. Mainly known from the Middle Triassic conservation Lagerstätte of Monte San Giorgio on the Swiss-Italian border, it is characterized by an extraordinarily long and stiffened neck that is almost three times the length of the trunk, despite being composed of only 13 hyper-elongate cervical vertebrae [1-8]. Its paleobiology remains contentious, with both aquatic and terrestrial lifestyles having been proposed [1, 9-12]. Among the Tanystropheus specimens, a small morphotype bearing tricuspid teeth and a large morphotype bearing single-cusped teeth can be recognized, historically considered as juveniles and adults of the same species [4]. Using high-resolution synchrotron radiation microtomography (SRμCT), we three-dimensionally reconstruct a virtually complete but disarticulated skull of the large morphotype, including its endocast and inner ear, to reveal its morphology for the first time. The skull is specialized toward hunting in an aquatic environment, indicated by the placement of the nares on the top of the snout and a "fish-trap"-type dentition. The SRμCT data and limb bone paleohistology reveal that the large morphotype represents a separate species (Tanystropheus hydroides sp. nov.). Skeletochronology of the small morphotype specimens indicates that they are skeletally mature despite their small size, thus representing adult individuals of Tanystropheus longobardicus. The co-occurrence of these two species of disparate size ranges and dentitions provides strong evidence for niche partitioning, highlighting the surprising versatility of the Tanystropheus bauplan and the complexity of Middle Triassic nearshore ecosystems.

View more