Welcome to The Natural History Museum repository

The Natural History Museum is an international leader in the study of the natural world. Our science describes the diversity of nature, promotes an understanding of its past, and supports the anticipation and management of the impact of human activity on the environment.

The Museum's repository provides free access to publications produced by more than 300 scientists working here. Researchers at the Museum study a diverse range of issues, including threats to Earth's biodiversity, the maintenance of delicate ecosystems, environmental pollution and disease. The accessible repository showcases this broad research output.

The repository was launched in 2016 with an initially modest number of journal publications in its database. It now includes book chapters and blogs from Museum scientists.

Select a community to browse its collections.

  • How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths

    Beerli, Nicolas; Bärtschi, Florian; Ballesteros‐Mejia, Liliana; Kitching, I; Beck, Jan (Wiley, 2019-08)
    Aim: We mapped the geographical pattern of body sizes in sphingid moths and investigated latitudinal clines. We tested hypotheses concerning their possible environmental control, that is, effects of temperature (negative: temperature size rule or Bergmann's rule; positive: converse Bergmann rule), food availability, robustness to starvation during extreme weather and seasonality. Location: Old World and Australia/Pacific region. Methods: Body size data of 950 sphingid species were compiled and related to their distribution maps. Focusing on body length, we mapped the median and maximum size of all species occurring in 100 km grid cells. In a comparative approach, we tested the predictions from explanatory hypotheses by correlating species' size to the average environmental conditions encountered throughout their range, under univariate and multivariate models. We accounted for phylogeny by stepwise inclusion of phylogenetically informed taxonomic classifications into hierarchical random‐intercept mixed models. Results: Median body sizes showed a distinctive geographical pattern, with large species in the Middle East and the Asian tropics, and smaller species in temperate regions and the Afrotropics. Absolute latitude explained very little body size variation, but there was a latitudinal cline of maximum size. Species' median size was correlated with net primary productivity, supporting the food availability hypothesis, whereas support for other hypotheses was weak. Environmental correlations contributed much less (i.e. <10%) to explaining overall size variation than phylogeny (inclusion of which led to models explaining >70% of variability). Main conclusion: The intuitive impression of larger species in the tropics is shaped by larger size maxima. Median body sizes are only very weakly related to latitude. Most of the geographical variation in body size in sphingid moths is explained by their phylogenetic past. NPP and forest cover correlate positively with the body size, which supports the idea that food availability allowed the evolution of larger sizes.
  • How climatic variability is linked to the spatial distribution of range sizes: seasonality versus climate change velocity in sphingid moths

    Grünig, Marc; Beerli, Nicolas; Ballesteros-Mejia, Liliana; Kitching, I; Beck, Jan (Wiley, 2017-11)
    Aim: To map the spatial variation of range sizes within sphingid moths, and to test hypotheses on its environmental control. In particular, we investigate effects of climate change velocity since the Pleistocene and the mid-Holocene, temperature and precipitation seasonality, topography, Pleistocene ice cover, and available land area. Location: Old World and Australasia, excluding smaller islands. Methods: We used fine-grained range maps (based on expert-edited distribution modelling) for all 972 sphingid moth species in the research region and calculated, at a grain size of 100 km, the median of range sizes of all species that co-occur in a pixel. Climate, topography and Pleistocene ice cover data were taken from publicly available sources. We calculated climate change velocities (CCV) for the last 21ky as well as 6ky. We compared the effects of seasonality and CCV on median range sizes with spatially explicit models while accounting for effects of elevation range, glaciation history and available land area. Results: Range sizes show a clear spatial pattern, with highest median values in deserts and arctic regions and lowest values in isolated tropical regions. Range sizes were only weakly related to absolute latitude (predicted by Rapoport’s effect), but there was a strong north-south pattern of range size decline. Temperature seasonality emerged as the strongest environmental correlate of median range size, in univariate as well as multivariate models, whereas effects of CCV were weak and unstable for both time periods. These results were robust to variations in the parameters in alternative analyses, among them multivariate CCV. Main conclusions: Temperature seasonality is a strong correlate of spatial range size variation, while effects of longer-term temperature change, as captured by CCV, received much weaker support.
  • A Minimally Morphologically Destructive Approach for DNA Retrieval and Whole-Genome Shotgun Sequencing of Pinned Historic Dipteran Vector Species

    Korlević, Petra; McAlister, Erica; Mayho, Matthew; Makunin, Alex; Flicek, Paul; Lawniczak, Mara KN (Oxford University Press (OUP), 2021-10-01)
    Abstract: Museum collections contain enormous quantities of insect specimens collected over the past century, covering a period of increased and varied insecticide usage. These historic collections are therefore incredibly valuable as genomic snapshots of organisms before, during, and after exposure to novel selective pressures. However, these samples come with their own challenges compared with present-day collections, as they are fragile and retrievable DNA is low yield and fragmented. In this article, we tested several DNA extraction procedures across pinned historic Diptera specimens from four disease vector genera: Anopheles, Aedes, Culex, and Glossina. We identify an approach that minimizes morphological damage while maximizing DNA retrieval for Illumina library preparation and sequencing that can accommodate the fragmented and low yield nature of historic DNA. We identify several key points in retrieving sufficient DNA while keeping morphological damage to a minimum: an initial rehydration step, a short incubation without agitation in a modified low salt Proteinase K buffer (referred to as “lysis buffer C” throughout), and critical point drying of samples post-extraction to prevent tissue collapse caused by air drying. The suggested method presented here provides a solid foundation for exploring the genomes and morphology of historic Diptera collections.
  • Stability in Lepidoptera names is not served by reversal to gender agreement: a response to Wiemers et al. (2018)

    van Nieukerken, Erik J; Karsholt, Ole; Hausmann, Axel; Holloway, Jeremy D; Huemer, Peter; Kitching, I; Nuss, Matthias; Pohl, Gregory R; Rajaei, Hossein; Rennland, Erwin; et al. (Pensoft Publishers, 2019-06-26)
  • Genome-wide SNP Data Reveal an Overestimation of Species Diversity in a Group of Hawkmoths

    Hundsdoerfer, Anna K; Lee, Kyung Min; Kitching, I; Mutanen, Marko (Oxford University Press (OUP), 2019-05-29)
    Abstract: The interface between populations and evolving young species continues to generate much contemporary debate in systematics depending on the species concept(s) applied but which ultimately reduces to the fundamental question of “when do nondiscrete entities become distinct, mutually exclusive evolutionary units”? Species are perceived as critical biological entities, and the discovery and naming of new species is perceived by many authors as a major research aim for assessing current biodiversity before much of it becomes extinct. However, less attention is given to determining whether these names represent valid biological entities because this is perceived as both a laborious chore and an undesirable research outcome. The charismatic spurge hawkmoths (Hyles euphorbiae complex, HEC) offer an opportunity to study this less fashionable aspect of systematics. To elucidate this intriguing systematic challenge, we analyzed over 10,000 ddRAD single nucleotide polymorphisms from 62 individuals using coalescent-based and population genomic methodology. These genome-wide data reveal a clear overestimation of (sub)species-level diversity and demonstrate that the HEC taxonomy has been seriously oversplit. We conclude that only one valid species name should be retained for the entire HEC, namely Hyles euphorbiae, and we do not recognize any formal subspecies or other taxonomic subdivisions within it. Although the adoption of genetic tools has frequently revealed morphologically cryptic diversity, the converse, taxonomic oversplitting of species, is generally (and wrongly in our opinion) accepted as rare. Furthermore, taxonomic oversplitting is most likely to have taken place in intensively studied popular and charismatic organisms such as the HEC.

View more