Welcome to The Natural History Museum repository
The Natural History Museum is an international leader in the study of the natural world. Our science describes the diversity of nature, promotes an understanding of its past, and supports the anticipation and management of the impact of human activity on the environment.
The Museum's repository provides free access to publications produced by more than 300 scientists working here. Researchers at the Museum study a diverse range of issues, including threats to Earth's biodiversity, the maintenance of delicate ecosystems, environmental pollution and disease. The accessible repository showcases this broad research output.
The repository was launched in 2016 with an initially modest number of journal publications in its database. It now includes book chapters and blogs from Museum scientists.
Communities in DSpace
Select a community to browse its collections.
Recently Added
-
A Tube-Dwelling Early Cambrian LobopodianFacivermis yunnanicus [1, 2] is an enigmatic worm-like animal from the early Cambrian Chengjiang Biota of Yunnan Province, China. It is a small (<10 cm) bilaterian with five pairs of spiny anterior arms, an elongated body, and a swollen posterior end. The unusual morphology of Facivermis has prompted a history of diverse taxonomic interpretations, including among annelids [1, 3], lophophorates [4], and pentastomids [5]. However, in other studies, Facivermis is considered to be more similar to lobopodians [2, 6-8]-the fossil grade from which modern panarthropods (arthropods, onychophorans, and tardigrades) are derived. In these studies, Facivermis is thought to be intermediate between cycloneuralian worms and lobopodians. Facivermis has therefore been suggested to represent an early endobenthic-epibenthic panarthropod transition [6] and to provide crucial insights into the origin of paired appendages [2]. However, the systematic affinity of Facivermis was poorly supported in a previous phylogeny [6], partially due to incomplete understanding of its morphology. Therefore, the evolutionary significance of Facivermis remains unresolved. In this study, we re-examine Facivermis from new material and the holotype, leading to the discovery of several new morphological features, such as paired eyes on the head and a dwelling tube. Comprehensive phylogenetic analyses using parsimony, Bayesian inference, and maximum likelihood all support Facivermis as a luolishaniid in a derived position within the onychophoran stem group rather than as a basal panarthropod. In contrast to previous studies, we therefore conclude that Facivermis provides a rare early Cambrian example of secondary loss to accommodate a highly specialized tube-dwelling lifestyle.
-
Evidence for shock‐induced anhydrite recrystallization and decomposition at the UNAM‐7 drill core from the Chicxulub impact structureAbstract: Drill core UNAM‐7, obtained 126 km from the center of the Chicxulub impact structure, outside the crater rim, contains a sequence of 126.2 m suevitic, silicate melt‐rich breccia on top of a silicate melt‐poor breccia with anhydrite megablocks. Total reflection X‐ray fluorescence analysis of altered silicate melt particles of the suevitic breccia shows high concentrations of Br, Sr, Cl, and Cu, which may indicate hydrothermal reaction with sea water. Scanning electron microscopy and energy‐dispersive spectrometry reveal recrystallization of silicate components during annealing by superheated impact melt. At anhydrite clasts, recrystallization is represented by a sequence of comparatively large columnar, euhedral to subhedral anhydrite grains and smaller, polygonal to interlobate grains that progressively annealed deformation features. The presence of voids in anhydrite grains indicates SOx gas release during anhydrite decomposition. The silicate melt‐poor breccia contains carbonate and sulfate particles cemented in a microcrystalline matrix. The matrix is dominated by anhydrite, dolomite, and calcite, with minor celestine and feldspars. Calcite‐dominated inclusions in silicate melt with flow textures between recrystallized anhydrite and silicate melt suggest a former liquid state of these components. Vesicular and spherulitic calcite particles may indicate quenching of carbonate melts in the atmosphere at high cooling rates, and partial decomposition during decompression at postshock conditions. Dolomite particles with a recrystallization sequence of interlobate, polygonal, subhedral to euhedral microstructures may have been formed at a low cooling rate. We conclude that UNAM‐7 provides evidence for solid‐state recrystallization or melting and dissociation of sulfates during the Chicxulub impact event. The lack of anhydrite in the K‐Pg ejecta deposits and rare presence of anhydrite in crater suevites may indicate that sulfates were completely dissociated at high temperature (T> 1465 °C)—whereas ejecta deposited near the outer crater rim experienced postshock conditions that were less effective at dissociation.
-
Impact‐Induced Porosity and Microfracturing at the Chicxulub Impact StructureAbstract: Porosity and its distribution in impact craters has an important effect on the petrophysical properties of impactites: seismic wave speeds and reflectivity, rock permeability, strength, and density. These properties are important for the identification of potential craters and the understanding of the process and consequences of cratering. The Chicxulub impact structure, recently drilled by the joint International Ocean Discovery Program and International Continental scientific Drilling Program Expedition 364, provides a unique opportunity to compare direct observations of impactites with geophysical observations and models. Here, we combine small‐scale petrographic and petrophysical measurements with larger‐scale geophysical measurements and numerical simulations of the Chicxulub impact structure. Our aim is to assess the cause of unusually high porosities within the Chicxulub peak ring and the capability of numerical impact simulations to predict the gravity signature and the distribution and texture of porosity within craters. We show that high porosities within the Chicxulub peak ring are primarily caused by shock‐induced microfracturing. These fractures have preferred orientations, which can be predicted by considering the orientations of principal stresses during shock, and subsequent deformation during peak ring formation. Our results demonstrate that numerical impact simulations, implementing the Dynamic Collapse Model of peak ring formation, can accurately predict the distribution and orientation of impact‐induced microfractures in large craters, which plays an important role in the geophysical signature of impact structures.
-
Brecciation at the grain scale within the lithologies of the Winchcombe Mighei‐like carbonaceous chondriteAbstract: The Mighei‐like carbonaceous (CM) chondrites have been altered to various extents by water–rock reactions on their parent asteroid(s). This aqueous processing has destroyed much of the primary mineralogy of these meteorites, and the degree of alteration is highly heterogeneous at both the macroscale and nanoscale. Many CM meteorites are also heavily brecciated juxtaposing clasts with different alteration histories. Here we present results from the fine‐grained team consortium study of the Winchcombe meteorite, a recent CM chondrite fall that is a breccia and contains eight discrete lithologies that span a range of petrologic subtypes (CM2.0–2.6) that are suspended in a cataclastic matrix. Coordinated multitechnique, multiscale analyses of this breccia reveal substantial heterogeneity in the extent of alteration, even in highly aqueously processed lithologies. Some lithologies exhibit the full range and can comprise nearly unaltered coarse‐grained primary components that are found directly alongside other coarse‐grained components that have experienced complete pseudomorphic replacement by secondary minerals. The preservation of the complete alteration sequence and pseudomorph textures showing tochilinite–cronstedtite intergrowths are replacing carbonates suggest that CMs may be initially more carbonate rich than previously thought. This heterogeneity in aqueous alteration extent is likely due to a combination of microscale variability in permeability and water/rock ratio generating local microenvironments as has been established previously. Nevertheless, some of the disequilibrium mineral assemblages observed, such as hydrous minerals juxtaposed with surviving phases that are typically more fluid susceptible, can only be reconciled by multiple generations of alteration, disruption, and reaccretion of the CM parent body at the grain scale.
-
A microchondrule‐bearing micrometeorite and comparison with microchondrules in <scp>CM</scp> chondritesAbstract: We report the discovery of a partially altered microchondrule within a fine‐grained micrometeorite. This object is circular, <10 μm in diameter, and has a cryptocrystalline texture, internal zonation, and a thin S‐bearing rim. These features imply a period of post‐accretion parent body aqueous alteration, in which the former glassy igneous texture was subject to hydration and phyllosilicate formation as well as leaching of fluid‐mobile elements. We compare this microchondrule to three microchondrules found in two CM chondrites: Elephant Moraine (EET) 96029 and Murchison. In all instances, their formation appears closely linked to the late stages of chondrule formation, chondrule recycling, and fine‐grained rim accretion. Likewise, they share cryptocrystalline textures and evidence of mild aqueous alteration and thus similar histories. We also investigate the host micrometeorite's petrology, which includes an unusually Cr‐rich mineralogy, containing both Mn‐chromite spinel and low‐Fe‐Cr‐rich (LICE) anhydrous silicates. Because these two refractory phases cannot form together in a single geochemical reservoir under equilibrium condensation, this micrometeorite's accretionary history requires a complex timeline with formation via nonequilibrium batch crystallization or accumulation of materials from large radial distances. In contrast, the bulk composition of this micrometeorite and its internal textures are consistent with a hydrated carbonaceous chondrite source. This micrometeorite is interpreted as a fragment of fine‐grained rim material that once surrounded a larger parent chondrule and was derived from a primitive carbonaceous parent body; either a CM chondrite or Jupiter family comet.