New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection

Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, SW7 5BD, UK

Correspondence: Lyndsey R. Fox (lyndsey.fox@nhm.ac.uk)

Received: 12 January 2018 – Revised: 23 March 2018 – Accepted: 21 April 2018 – Published: 16 May 2018

Abstract. This paper describes five new Mesozoic, deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London. The focus is on selected calcareous and agglutinating taxa that are of stratigraphical and/or palaeoecological significance for academic and industrial related activities.


1 Introduction

The North Sea Basin lies in between Scandinavia and north-western Europe and is bounded by the continental shelf edge, approximately comparable to the region covered by the current North Sea today. It is a topographical low and can be divided into several sub-basins of late Palaeozoic through Cenozoic age (Carr, 2004). The area has an active tectonic history and deposition has varied between the different basins. Benthic foraminifera have been used extensively in the oil and gas industry to date the sediments and investigate the impact of environmental and palaeobathymetric changes on these semi-enclosed basins (Gradstein et al., 1994; Jenkins and Murray, 1989; King and Hughes, 1983).

British Petroleum’s exploration activities, especially in the UK sector, during the middle of the 20th century amassed a large volume of Mesozoic sample material and subsequently prepared micropalaeontological specimens, many of which are now housed at the Natural History Museum, London. The north-western European reference collection contains many of the specimens used in exploration activities and provides an almost unique collection of useful, yet in some instances formally un-described, foraminiferal taxa.

The taxonomy of the Cenozoic material from this collection has already been the focus of separate study (Fox et al., 2018). Presented here are five newly named species of Mesozoic benthic foraminifera which have academic and industrial value in their biostratigraphic and palaeoecological significance.

2 Materials

Light microscope images were taken using a Nikon SMZ25 stereoscopic zoom microscope and Nikon DS-Fi2 digital camera. SEM images were taken using uncoated specimens on a LEO 1455 VP scanning electron microscope.

3 Systematics

We present systematic data (descriptions, synonymies, biogeography and palaeoecologies) that were assembled from primary research, from the micropalaeontological literature, and also from consultation with specialists. Brief geological context is also provided, where available, for the well and/or outcrop where the type specimens were found. The taxonomic classification follows Loeblich and Tappan (1987)
with a few exceptions which mainly reflect taxonomic updates published subsequently (Kaminski, 2014).

Order **Miliolida** Delage & Hérouard, 1896  
Superfamily **Nubecularioidea** Jones, 1875  
Family **Ophthalmidiidae** Wiesner, 1920  
Genus **Ophthalmidium** Kubler & Zwingli, 1870  
Type species: *Oculina porosa* Kubler & Zwingli, 1866

**Ophthalmidium dracomaris** sp. nov.  
Figs. 1.1–1.5

**Synonyms**  
*Ophthalmidium* sp. A Medd in Richardson 1979.  
*Ophthalmidium* sp. A Morris & Coleman 1981, 221. pl. 6.3.6, fig. 15.

**Diagnosis**: Compressed porcellaneous test, consisting of six to eight chambers, with a long tapering neck and simple circular aperture.

**Dimensions**: Diameter is \( \sim 100 \mu m \); height of test is \( \sim 300 \mu m \).

**Description**: Test compressed, elliptical in outline; porcellaneous wall texture, periphery acute and weakly keeled; chambers almost invisible externally, half-whorl in length, rounded at the base and tapering slightly towards the aperture, margins almost parallel, sutures very weakly depressed; aperture is simple, circular, at the end of a long tapering neck, lacking a tooth.

**Remarks**: Specimens were originally described by Coleman (1974; in Hortman et al., 1974) from the area around Milton Keynes, Buckinghamshire, and these have been described in some detail by Morris and Coleman (1989). *Ophthalmidium dracomaris* sp. nov. differs from *O. compressum* (Barnard, Cordey & Shipp, 1981) by possessing fewer chambers. *O. maredraco* bears a resemblance to *O. michalskii* illustrated in Plate 1, Figs. 1, 6 and 7, but differs by having a more flattened, less rounded test and a longer, narrower neck.

**Type level**: Middle Jurassic. Late Callovian, athleta–lamberti ammonite zones.

**Type locality**: Well: Tetney Lock-1, Lincolnshire, UK. Depth: 1652 ft (503.5 m).

**Distribution**: Late Callovian of England.

**Etymology**: This species was named based upon its resemblance to the head of a sea dragon.

**Holotype**: NHMUK PM PF 74496.

**Paratypes**: NHMUK PM PF 74497–74500.

Order **Lituolida** Lankester, 1885  
Superfamily **Trochamminoidea** Schwager, 1877  
Family **Trochamminidae** Schwager, 1877  
Genus **Trochammina** Parker & Jones, 1859  
Type species: *Rotalia (Trochammina) inflata* (Montagu) = *Nautilus inflatus* Montagu, 1808

**Trochammina fordonensis** sp. nov.  
Figs. 1.10–1.12

**Synonyms**  
*Trochammina* sp. 68 Internal British Petroleum report.

**Diagnosis**: Small, low spired, finely agglutinated, trochoid test with eight to nine chambers in the final whorl, umbilical to extra-umbilical aperture with a lip.

**Dimensions**: Diameter is 150–200 µm; height of test is \( \sim 200 \mu m \).

**Description**: Test small, trochoid, flattened, very low spired, round in outline; consists of two whorls with eight to nine chambers in the final whorl, increasing gradually in size, flat on umbilical surface, convex on spiral side. Periphery acute, slightly lobate on margin. On the umbilical side only the final whorl is visible. Sutures are radial on umbilical side and slightly curved on the spiral side. Wall finely agglutinated with much cement; umbilical to extra-umbilical aperture with a lip, opening into umbilicus commonly obscured due to preservation.

**Remarks**: *Trochammina fordonensis* sp. nov. is similar to *Trochammina aquilonaris* Hedinger, 1993 in general morphology and size, but differs in having a flattened dorsal side and radial sutures on the umbilical side.

**Type level**: Early Aptian.

**Type locality**: Well: Fordon-1 (BGS Borehole TA07NE24), Yorkshire, UK. Depth: 750 ft (228.6 m).

**Distribution**: Speeton Clay Formation, UK.

**Etymology**: This taxon is named after the type locality.
Plate 1. (1–5) Ophthalmidium dracomaris n. sp.: (1) holotype (NHMUK PM PF 74496); (2–5) paratypes (NHMUK PM PF 74497–74500). (8–9) Eobigenerina calloviensis n. sp.: (8) holotype (NHMUK PM PF 74504); (9) paratype (NHMUK PM PF 74505). (10–12) Trochaminia fordonensis n. sp.: (10) holotype (NHMUK PM PF 74501); (11–12) paratype (NHMUK PM PF 74502–74503). (13–15) Arenoturrispirillina swiecickii n. sp.: (13) holotype (NHMUK PM PF 74506); (14–15) paratype (NHMUK PM PF 74507 + NHMUK PM PF 74552). (16–17) Atauxphragmium mariae n. sp.: (16) holotype (NHMUK PM PF 74553); (17) paratype (NHMUK PM PF 74554).
Holotype: NHMUK PM PF 74501.

Paratypes: NHMUK PM PF 74502–74503.

Order Textulariida Delage & Hérouard, 1896
Superfamily Verneuilinoidea Cushman, 1911.

Genus Eobigenerina Cetean, Setoyama, Kaminski, Neagu, Bubík, Filipescu & Tyszka, 2008
Type species: Bigenerina variablis Vašíˇcek, 1947

Eobigenerina calloviensis sp. nov.
Figs. 1.8–1.9

Synonyms
Bigenerina sp. 24 Internal British Petroleum report.

Diagnosis: Small biserial to uniserial agglutinating test with six to seven slowly enlarging chambers.

Dimensions: Diameter is ∼150 µm; height of test is ∼300 µm.

Description: Test free, small, elongate in lateral outline and compressed; tapered at the base and rounded at the apertural end. Consists of two sections; initially biserial with six to seven slowly enlarging chambers; final two chambers are loosely biserial to lax-uniserial, not symmetrical, forming an uneven row with oblique sutures. Chambers in the uniserial part increase very little in size as added. Sutures are thin and depressed. Aperture terminal, in the form of a rounded opening on the slightly upwardly prolonged end of the last chamber. Wall finely agglutinated with grains less than 20 µm in size.

Remarks: The genus Eobigenerina differs from Bigenerina in possessing organic cement that is silicified in fossil specimens. The Cenozoic genus Bigenerina possesses calcareous cement with pseudopores. Many of the late Paleozoic to Mesozoic species that were originally described as Bigenerina likely belong in Eobigenerina (Cetean et al., 2011). The chamber arrangement in the new species is initially biserial, becoming loosely biserial to lax-uniserial (sensu Kaminski et al., 2011) in the final chambers. This species differs from Bigenerina elongata (Gauger, 1953) and B. ciscoensis (Cushman and Waters, 1928) in possessing a shorter uniserial part and smaller test.

Type level: Early Jurassic; late Callovian, athleta–lamberti ammonite zones.

Type locality: Well: Tetney Lock-1 (BGS Borehole: TA30SW93), Lincolnshire, UK. Depth 1751 ft (533.7 m).

Distribution: Currently restricted to the immediate area around the type locality.

Etymology: This simple agglutinating form is named for the type level at which it is found.

Holotype: NHMUK PM PF 74504.

Paratypes: NHMUK PM PF 74505.

Order Spirillinida Hohenegger & Piller, 1975
Superfamily Ammodiscoidea Reuss, 1862
Family Ammodiscidae Reuss, 1862
Genus Arenoturrispirillina Tairov, 1956
Type species: Spirillina limbata Brady, 1879
Arenoturrispirillina swiecickii sp. nov.
Figs. 1.13–1.15

Synonyms
Arenoturrispirillina sp. A Swiecicki, 1980; pl. 1, figs. 3, 4.

Diagnosis: Single sub-rectangular to rectangular tubular chamber, coiling in a regular trochospire, with a circular outline.

Dimensions: Diameter is ∼600 µm.

Description: Test free, large; low conical spire, consisting of proloculus followed by single tubular chamber coiling in a low regular trochospire, outline circular, peripheral margin sub-rectangular to rectangular, occasionally developing angular keels; chamber size increasing gradually and uniformly, forming five to six whorls; spiral suture distinct and depressed; aperture arcuate opening at end of chamber; wall finely agglutinated, organic cement; surface finely roughened.

Remarks: This species was referred to as Spirillina limbata Brady by Heron-Allen and Earland (1910). However, examination of their hypotypes by Barr (1962) revealed the present species to be distinct, bearing only a superficial resemblance to the Recent S. limbata. Barr (1962) described this form as “Ammodiscoides heronalleni”, but this name has never been published. This species was illustrated and described in Swiecicki’s 1980 doctoral thesis in which it was removed from the genus Ammodiscoides Cushman (1909) as “it does not show the change from trochospiral to planispiral growth, characteristic of this genus” and was
instead placed in *Arenoturrisspirillina* Tairov (1956) on the basis of its “low, regular trochospiral coil”. There have been several references (e.g. Cushman, 1946; Hofker, 1959) to Cretaceous occurrences of *Ammodiscoides turbinatus* (Cushman, 1909) originally described from the Holocene, Gulf of Mexico. This latter species, the genotype of *Ammodiscoides*, “lacks the regular trochospiral form” of the present species and therefore further investigation is required on these Cretaceous references (Sweicicki, 1980).

**Type level**: Campanian, benthic foraminifera biozones B1ii–B5i.

**Type locality**: On shore, Ignaberga, Sweden.

**Distribution**: Rare specimens have been found in the Campanian of the Isle of Wight. A single specimen was also found in the lower Maastrichtian of Norfolk (Sweicicki, 1980).

**Etymology**: This species is named for Anthony Sweicicki, who first described this taxon in his doctoral thesis on the biostratigraphy of the Campanian and Maastrichtian chalks of the United Kingdom (1980).

**Holotype**: NHMUK PM PF 74506.

**Paratypes**: NHMUK PM PF 74507 + NHMUK PM PF 74552.

- **Order**: *Loftusiida* Kaminski & Mikhailievich, 2003
- **Superfamily**: *Ataxophragmioidea* Schwager, 1877
- **Family**: *Ataxophragmiidae* Schwager, 1877
- **Genus**: *Ataxophragmium* Reuss, 1860
- **Type species**: *Bulimina variabilis* d’Orbigny, 1840

**Ataxophragmium mariae** sp. nov.

- Figs. 1.16–1.17
- **Synonyms**
  - 1941 *Ataxogyroidina globosa* (von Hagenow); Marie, p. 59, pl. 5, figs. 50-7.
  - 1966 *Ataxophragmium globosum* (von Hagenow); Hofker, p. 33, pl.1, fig. 9.
  - 1977 *Ataxophragmium globosum* (von Hagenow); Villain, p. 43, pl.1, figs. 2, 3.

**Diagnosis**: A species of *Ataxophragmium* with a regular, low trochospiral chamber arrangement, tendency to planoconvex form, sub-rectangular, interiomarginal aperture and smooth surface.

**Dimensions**: Height of test: 700 µm; diameter: 650 µm.

**Description**: Test free; an asymmetrical low trochospiral coil with a tendency to planoconvexity, outline sub-spherical; two, occasionally three, whorls embracing, overlapping, evolute; chambers indistinct, moderately and uniformly increasing in size, may be slightly inflated, six per whorl several times higher than broad; last chamber often overlaps previous whorl both dorsally and ventrally; sutures distinct, flush; apertural face flat, making angle of approximately 65° with previous whorl; aperture a deep, elongate, sub-rectangular slit along interiomarginal suture of last chamber, may show partial development of central lobe; interior most often simple, occasional forms show development of sutural buttresses; wall finely agglutinated, with calcareous cement; surface smooth.

**Remarks**: Marie (1941) originally described this rather distinctive species of *Ataxophragmium*, noting in particular its characteristic form and aperture. However, he referred to it as *Nonionina globosa* von Hagenow (1842), a form described, though never figured, from the Upper Cretaceous. Later workers, including Reuss (1862), Marsson (1878), Franke (1925, 1927), Cushman (1931), Schijfsma (1946) and Visser (1951), have all considered *N. globosa* to be calcareous and perforate, and it is herein considered to belong to the genus *Gyroidinoides*. The present form *A. mariae* is broadly similar in shape, but its wall character and aperture serve clearly to distinguish it. Schijfsma (1946) noted the above situation and erected *Ataxogyroidina pseudoglobosa* and included forms referred to by Marie as *A. globosa* in its synonymy. From his figures and descriptions, however, it is clear that *A. pseudoglobosa* (Schijfsma, 1946) is not conspecific with Marie’s species nor with the (Tairov, 1959) forms herein described, lacking as it does the characteristic form, aperture and smooth surface.

**Type level**: Upper Campanian.

**Type locality**: German Jura.

**Distribution**: This species is moderately common in the upper Campanian on the Isle of Wight and Norfolk, UK.

**Etymology**: Named in honour of Pierre Marie who first described this taxon.

**Holotype**: NHMUK PM PF 74553.

**Paratypes**: NHMUK PM PF 74554.

## 4 Summary

Five new species of deep-water benthic foraminifera from the Mesozoic of north-western Europe are described from the ex-
tensive reference collections at the Natural History Museum, London. These benthic foraminifera are important for their biostratigraphic and palaeoenvironmental value, hence their overdue formalized taxonomic descriptions. This study highlights the importance of both museum and industrial collections for their vast potential for new, publishable data, including new taxa and material from restricted and no-longer accessible locations.

**Data availability.** Type and figured material is deposited at the Natural History Museum, London, where it available for inspection upon request.

**Competing interests.** The authors declare that they have no conflict of interest.

**Acknowledgements.** We are grateful to our reviewers, Mike Kaminski and Nigel Ainsworth, whose constructive comments greatly improved this paper. This research was undertaken at the Natural History Museum, London, and has been funded by BP exploration (Sunbury, UK) through the project “A Re-appraisal of the BP Micropalaeontology Collection”.


Edited by: Kirsty Edgar
Reviewed by: Nigel Ainsworth and Michael Kaminski

**References**


Brady, H. B.: Memoirs: Notes on some of the Reticularian Rhi-

Carr, S. J.: The North Sea Basin, in: Quaternary Glaciations – Ex-
tent and Chronology, Part 1, edited by: Ehlers, J. and Gibbard, P.

Cetean, C. G., Setoyama, E., Kaminski, M. A., Neagu, T., Bubík,
M., Filipescu, S., and Tyszka, J.: Eobigenerina, a cosmopolit-
an deep-water agglutinated foraminifer, and remarks on late Pa-
leozoic to Mesozoic species formerly assigned to Pseudoboliv-
ina and Bigenerina, in: Proceedings of the Eighth International
Workshop on Agglutinated Foraminifera, edited by: Kaminski,
M. A. and Filipescu, S., Grzybowski Foundation Special Publi-

Coleman, B. E.: Appendix 3: Foraminifera of the Oxford Clay and
Kellaways Beds, in: The geology of the New Town of Milton
Keynes, edited by: Horton, A., Coleman, B. E., Cox, B. M.,
Shephard-Thorn, E. R., Morter, A. A., Penn, I. E., Thurrell, R.
G., and Ivimey-Cook, H. C., Institute of Geological Science

Cushman, J.: A Monograph of the Foraminifera of the North Pacific
Ocean, Part 2, Textulariidae: Smithsonian Institute, Bulletin of

Cushman, J. and Waters, J.: Additional Cisco Foraminifera
from Texas, Contributions from the Cushman Laboratory for

Cushman, J. A.: Ammodiscoids, a new genus of arenaceous
foraminifera. Proceedings of the United States National Mu-

Cushman, J. A.: New late Tertiary foraminifera from Viti Levu, Fiji:
Contributions from the Cushman Laboratory for Foraminifer-
al Research, Sharon, Mass., USA, 7, 23–32, 1931.

Cushman, J. A.: Upper Cretaceous Foraminifera of the Gulf Coastal
region of the United States and adjacent areas, Geological Survey
professional paper, 206, 1–241, 1946.

Delage, Y. and Hérouard, E. J. É.: Traité de zoologie concrète:
Vol. 1, La Cellule et les Protozoaires, Paris, Schleicher Frères,

d’Orbigny, A. D.: Mémoire sur les foraminifères de la Craie
Blanche du Basin de paris: Mémoires de la Société géologique
de France, Paléontologie, Paris, France, 4, 51 pp., 1840.

d’Orbigny, A. D.: Foraminifères fossiles du Bassin Tertiaire de Vi-
enne (Autriche), Gide, 2, 406 pp., 1846.

Fox, L. R., Stukins, S., Hill, T., and Bailey, H.: New species of
Cenozoic benthic foraminifera from the former British
Petroleum micropalaeontology collection, J. Micropalaeontol.,

Franke, A.: Die Foraminiferen der pommerschen Kreide: Greif-
swald, Univ., Geol.-Pal. Inst., Abh., Grieswald, Deutschland, 6,
p. 69, 1925.

Franke, A.: Die Foraminiferen und Ostracoden des Paleoceánis von
Rugaard in Jütland und Sundkrogen bei Kopenhagen: Danmarks
Geol. Unders., Kjobenhavn, Danmark, 2, 49 pp., 1927.

Gauger, D.: Microfauna of the Hilliard Formation, in: Microfossils
of the upper Cretaceous of northeastern Utah and southwestern
Wyoming, edited by: Peterson, R. H., Gauger, D. J., and Lank-
ford, R. R., Bulletin of the Utah Geological and Mineralogical

Gradstein, F. M., Kaminski, M., Berggren, W., Kristiansen, I.,
and d’Iorio, M.: Cenozoic biostratigraphy of the North Sea and

Heron-Allen, E. and Earland, A.: On the Recent and Fossil
Foraminifera of the Shore-sands of Selsey Bill, Sussex – Part V.,

Hofker, J.: Les Foraminifères du Crétacé supérieur du Continent:
84 Congrès des Sociétés Savantes, Dijon, 368–397, 1959.

Hofker Sr., J.: The Jurassic genus Reinholdella Broten, 1948
(Foraminifera), Paläontologische Zeitschrift, 26, 1–2, 1952.

Foraminifera, Ellis Horwood, 1989.

Kaminski, M. A.: The year 2000 classification of the agglutinated
foraminifera 2004, Grzybowski Foundation, in: Proceedings of
the Sixth International Workshop on Agglutinated Foraminifera,
edited by: Bubík, M. and Kaminski, M. A., Grzybowski Founda-

Kaminski, M. A., Cetean, C. G., and Tyszka, J.: Nomenclature to
describe the transition from multiserial to uniserial chamber ar-
rangement in benthic foraminifera, J. Micropalaeontol., 30, 7–


Schijsma, E.: The Foraminifera from the Hervian (Campanian) of Southern Limburg, Mededelingen van de Geologische Stichting, 7, 1–174, 1946.


