Lycopodiella inundata: insights into plant-fungal associations in early vascular plants

J. Kowal1, J. Duckett1, A. Jacob1, W. Rimington2, M. Bidartondo2, K. Field4, S. Schornack3, S. Pressel2
1Natural History Museum, London. 2Imperial College London. 3Royal Botanic Gardens, Kew. 4University of Leeds.

Contact: j.kowal@nhm.ac.uk

Background: Recent studies have revealed that extant basal vascular plants associate with a wide range of Mucoromycotina and/or Glomeromycotina fungi, paralleling the same in non-vascular liverworts and hornworts. This dispels the long-held paradigm that these early diverging lineages harbour Glomeromycota exclusively. Endophytes belonging to both fungal lineages have also been reported, for the first time, in a Devonian plant (Lycopodiophyta lycioides). Together these discoveries point to much more diverse plant-fungus interactions in early vascular plants than previously assumed, however our understanding of these remains limited. To gain further insights into the associations between the early diverging Mucoromycotina and basal vascular plants, we are developing the lycopod Lycopodiella inundata as an experimental system because molecular tests and cytological examination of this species (at least at one site in the UK) point to exclusive colonisation by Mucoromycotina.

Findings to date: Through confocal, scanning electron (SEM) microscopy, and molecular analyses, we confirm that *L. inundata* sporophytes can be extensively colonized by Mucoromycotina as seen both in protocorms and roots (Figure 1a,c,f) and fungal sequences extracted from *L. inundata*. Our confocal images also show similar widespread colonization in *L. inundata*’s gametophyte phase, but here the identity of the fungal endophyte has not yet been confirmed. In protocorms, we also observed the ‘signature’ Mucoromycotina intercellular colonization pattern (Figure 1d,e) which closely resembles that in Haplomitriopsida liverwort (i.e. Haplomitrium and Treubia)-Mucoromycotina partnerships and the corin of *H. ligneri* (Figure 1g). However while these endophytes are known/assumed to enter the host via epidermal cells in Haplomitriopsida liverworts and *H. ligneri*, in *L. inundata* the protocorm hairs function as a conduit for fungal colonisation (Figure 1b). Our preliminary phylogram (Figure 3) based on five samples of *L. inundata* from Thursley Common (Figure 2) places the identification of *L. inundata*’s Mucoromycotina fungal strains within an envelope of previously determined fungal sequences extracted from Haplomitriopsida liverworts and closely aligned with two hornworts and the fern *Anogramma*, but separate from reference Mucoromycotina sequences extracted from later-derived angiosperms e.g. Quercus and Endagone fruit bodies.

Future directions: Our current isolation, resynthesis and molecular studies will provide further insights into both host and fungal specificity as well as colonization and mutualism strategies. We also aim to identify the genus identity of the gametophyte fungal endophyte which remains unknown. In *Lycopodiella inundata*, we see another example of a taxon which appears to associate exclusively with Mucoromycotina fungi while other Lycopsids host both Mucoromycotina and Glomeromycotina fungi similarly to the dual colonization observed in thalloid liverworts e.g. Lunularia. Whether these differences in symbiotic partners are influenced by external edaphic and ecological conditions remains a key question to better understanding belowground communities.

Funders: National Environmental Research Council.

Special thanks to both James Giles, Thursley Site Manager, Natural England and Dr. Tomasz Goral, Electron Microscopist, Natural History Museum.