Long-term stability in the volume of Atlantic Puffin (*Fratercula arctica*) eggs in the western North Atlantic

Kyle J. Lefort¹, Heather L. Major¹, Alexander L. Bond²,⁸,⁹, Antony W. Diamond³, Ian L. Jones⁴, William A. Montevecchi⁵, Jennifer F. Provencher⁶, and Gregory J. Robertson⁷

¹ Department of Biological Sciences, University of New Brunswick, Saint John, NB, E2L 4L5, Canada
² Department of Biology, University of Saskatchewan, and Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
³ Atlantic Laboratory for Avian Research, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
⁴ Department of Biology, Memorial University of Newfoundland, St. John’s, NL, A1B 3X9, Canada
⁵ Departments of Psychology, Biology, and Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, A1B 3X9, Canada
⁶ Environment and Climate Change Canada, Gatineau, PQ, J8Y 3Z5, Canada
⁷ Environment and Climate Change Canada, Mount Pearl, NL, A1N 4T3, Canada
⁸ Current address: Bird Group, Department of Life Sciences, The Natural History Museum, Tring, Hertfordshire, HP23 6AP, United Kingdom
⁹ Corresponding author: email a.bond@nhm.ac.uk

Kyle J. Lefort: klefort@unb.ca
Heather L. Major: heather.major@unb.ca
Alexander L. Bond: a.bond@nhm.ac.uk
Antony W. Diamond: tonydiamond49@gmail.com
Ian L. Jones: iljones@mun.ca
William A. Montevecchi: mont@mun.ca
Jennifer F. Provencher: jennifer.provencher@canada.ca
Gregory J. Robertson: greg.robertson@canada.ca
Abstract: In the eastern North Atlantic, declines in the volume of Atlantic Puffin (*Fratercula arctica* Linnaeus, 1758) eggs have been associated with shifts in the marine ecosystem, such as changes in the abundance of forage fishes and increasing sea-surface temperatures. In the western North Atlantic, where similar shifts in oceanographic conditions and changes in the abundance of forage fishes have presumably occurred, trends in the volume of Atlantic Puffin eggs remain unknown. In this study, we investigate Atlantic Puffin egg volume in the western North Atlantic. We compiled 140 years (1877–2016) of egg volume measurements (*n* = 1,805) and used general additive mixed-effects models to investigate temporal trends and regional variation. Our findings indicate that Atlantic Puffin egg volume differs regionally but has remained unchanged temporally in the western North Atlantic since at least the 1980s.

Key words: Alcidae, Atlantic Puffin, egg volume, *Fratercula arctica*, general additive models, seabirds, western North Atlantic
Introduction

Identifying climate change-related shifts to an ecosystem’s structure is fundamental to ecosystem management, particularly in the face of a rapidly changing climate. Seabirds can be useful indicators of change in marine ecosystems as environmental fluctuations are often expressed in their demographics (e.g., Cairns 1987; Croxall et al. 2002; Descamps et al. 2013). Owing to their high energetic requirements, many seabirds optimize the timing of energetically demanding events (e.g., reproduction, migration) with periods of favorable environmental conditions and resource availability (Stenseth and Mysterud 2002). Thus, one might expect phenological shifts to match shifts in the timing of favorable environmental conditions.

However, the phenological mismatch between seabird energy requirements and resource availability is common and is seemingly becoming more common in a changing climate (e.g., Durant et al. 2007; Hipfner 2008; Gaston et al. 2009; Keogan et al. 2018). To compensate for this mismatch, seabirds may regulate the energy invested into eggs in response to fluctuating resource availability, either by adjusting clutch size or, in the case of single-egg-laying species, egg size (Nisbet 1973; Drent and Daan 1980; Barrett et al. 2012; Bond et al. 2020; but see Christians 2002).

The Atlantic Puffin (*Fratercula arctica* Linnaeus, 1758) is a colony-nesting, single-egg-laying seabird whose distribution spans the North Atlantic Ocean (Lowther et al. 2020). Climate change has triggered shifts in the distribution and abundance of many marine species (Hoegh-Guldberg and Bruno 2010), presumably including the energy-rich forage fishes on which these seabirds rely during egg production. In the eastern North Atlantic, Barrett et al. (2012) documented declines in the volume of Atlantic Puffin eggs at two colonies driven by changes in the abundance of forage fishes and shifting climatic conditions, including rising sea-surface
temperatures. Barrett et al. (2012) suggested that these changes to the ecosystem’s structure imposed energetic constraints on egg-laying females through a mismatch between the energetic demands of egg production and pre-laying food availability. In this study, we compiled 140 years (1877–2016) of Atlantic Puffin egg volume measurements to investigate temporal trends and regional variation in the western North Atlantic where similar climate change-related shifts in the distribution and abundance of forage fishes have presumably occurred (Hoegh-Guldberg and Bruno 2010; e.g., Scopel et al. 2019). For example, Atlantic Puffins nesting at this study’s southernmost colony (Machias Seal Island, Bay of Fundy, Canada) are in an area of unprecedented ocean warming (Pershing et al. 2015). Given the observed ocean warming and the link between climatic conditions, pre-laying food availability, and egg volume in the eastern North Atlantic (Barrett et al. 2012), we predicted declines in the volume of Atlantic Puffin eggs in the western North Atlantic.

Materials and methods

Study area and egg measurements

We obtained Atlantic Puffin egg measurements \( n = 1,805 \) from nine western North Atlantic colonies between 1877 and 2016 (Fig. 1), ~85% of which \( n = 1,536 \) were obtained between 1980 and 2016 (see Supplemental Material Table S1). These eggs were either measured at breeding colonies and returned to nesting burrows or collected and measured off-site. We assumed selection for measurement or collection was haphazard, and all eggs were viable when measured or collected. For statistical analyses, we grouped measurements from the nine colonies into four geographic regions: Bay of Fundy, Gulf of St Lawrence, Newfoundland, and Labrador. Colonies were grouped in this way because several colonies had small sample sizes or
measurements recorded during only a single year. In all cases, the maximum length and breadth of individual eggs were recorded to the nearest 0.1 mm using calipers. Egg volume was estimated using the equation:

\[
\text{Volume} = K \times L \times B^2 \quad \text{(Hoyt 1979)}
\]

where the constant \( K = 0.507 \) (egg shape typical of Charadriiformes species; Hoyt 1979), \( L \) is egg length (mm), and \( B \) is maximum egg breadth (mm).

Statistical analyses

We tested the normality of the data using Shapiro-Wilk’s test. Owing to the potential for non-linear relationships, we used general additive mixed-effects models (GAMMs; Wood 2011) to quantify trends in egg volume using the R package mgcv (Wood 2019). We tested region as a fixed factor, colony as a random effect, and a cubic spline for collection year using generalized cross-validation to set the number of knots \( (k = 10; \text{Wood 2017}) \). We completed one analysis using the entire dataset (1877–2016) and a second excluding pre-1980 data, the latter representing a range similar to the eastern North Atlantic study (Barrett et al. 2012). In the second analysis, each region was represented by eggs from a single colony (Supplemental Material Table S1); thus, we used a general additive model with colony as a fixed factor and a cubic spline as described above.

Ethical approvals
We received permits from the Canadian Wildlife Service, followed relevant provincial and federal guidelines, and received approval from the institutional animal care and use committees at the University of New Brunswick, the University of Saskatchewan, Memorial University of Newfoundland, and Environment and Climate Change Canada for all egg measurements and collections.

Results

We achieved data normality following the removal of a single outlying measurement. Mean ± standard deviation egg volume across all regions was 63.3 ± 4.7 cm³ (range: 44.0–80.0 cm³). Egg volume differed among regions: eggs were smallest in the Bay of Fundy (mean ± standard deviation: 61.5 ± 4.4 cm³), followed by Newfoundland (62.7 ± 4.4 cm³), the Gulf of St Lawrence (63.2 ± 4.4 cm³; although not different from Newfoundland or Labrador), and largest in Labrador (64.0 ± 4.8 cm³; all $F > 2.90$, all $p < 0.01$; Table 1). Egg volume was not related to year of collection across the entire dataset ($F = 0.62$, effective df = 1, $p = 0.43$; Fig. 2), nor was it across the 1980–2016 dataset ($F = 0.02$, effective df = 1, $p = 0.90$).

Discussion

Contrary to Barrett et al.’s (2012) findings in the eastern North Atlantic (1980–2011), Atlantic Puffin egg volume in the western North Atlantic has remained unchanged since at least the 1980s (the scarcity of pre-1980s data limits discussion of longer-term trends). Bond et al. (2020) described similar stability in the eggs of Atlantic Yellow-nosed Albatrosses (Thalassarche chlororhynchos) in the South Atlantic Ocean. In the eastern North Atlantic, Barrett et al. (2012) showed that declines in the volume of Atlantic Puffin eggs were driven by
climatic conditions and changes in the abundance of forage fishes. Despite changing climatic
conditions in the western North Atlantic (e.g., rising sea-surface temperatures), egg volume
stability suggests that conditions during the pre-laying period did not exceed thresholds above
which prey (more specifically, energy) availability was influenced (but see discussion on
phenological shifts below). However, continued oceanographic change may influence the
availability of forage fishes and trigger similar egg volume declines. If this is the case, Machias
Seal Island, located near the southern edge of the species’ range and in an area of rapid ocean
warming (Pershing et al. 2015), may be among the first colonies to exhibit egg volume declines.
Nevertheless, any climate change-related shift in oceanographic conditions (rising sea-surface
temperatures or otherwise), which reduces the availability of forage fishes during the pre-laying
period, will reduce the energy available for egg production and could consequently cause egg
volume declines. However, we acknowledge the complex relationship between climate change
and the distribution and abundance of marine fishes (Hoegh-Guldberg and Bruno 2010).

Seabirds that lay single-egg clutches have few mechanisms by which they can adjust their
parental investment in the early stages of the breeding season; egg volume is one of the more
plastic of these traits (but see Christians 2002) along with shifting the timing of breeding (e.g.,
Schroeder et al. 2009) and skipping breeding altogether (e.g., Reed et al. 2015). In Atlantic
Puffins, the adjustment of parental investment through shifting egg-laying dates has been
observed on Machias Seal Island where egg-laying is occurring later (Fana 2019; 1995–2018). In
general, however, seabirds are poor at buffering climate change through phenological shifts
(Keogan et al. 2018). On Machias Seal Island, the adjustment of parental investment through
skipping breeding altogether is uncommon, although it has occurred more frequently in recent
years (A.W. Diamond, unpublished data). Thus, phenological shifts (e.g., Fana 2019) may have
been partially responsible for compensating for climate change in the western North Atlantic ecosystem.

We suggest the continued monitoring of North American Atlantic Puffin populations with a focus on improving our understanding of the relationships between resource availability and egg volume, constituent egg components, adult body mass, breeding success, and offspring fitness (Krist 2011). Furthermore, an improved understanding of wintering areas and migratory routes (see Guilford et al. 2011; Jessopp et al. 2013; Fayet et al. 2017; Baran 2019) is required to explore the relationship between egg volume and resource availability during the pre-laying period.
Acknowledgements

We thank those involved in the collection and measurement of eggs. In particular, we thank N Burgess, Environment and Climate Change Canada’s Atlantic Seabird Egg Contaminants Monitoring Program, and the National Wildlife Specimen Bank. We also thank S Rogers (Carnegie Museum of Natural History), D MacAlpine (New Brunswick Museum), N Djan-Chékar (The Rooms Provincial Museum of Newfoundland and Labrador), and M Peck (Royal Ontario Museum) for access to their respective museum collections. We thank R Rochette and anonymous reviewers for comments on previous drafts of this manuscript.

Competing interests

None to declare

Contributors’ statement

Kyle J. Lefort: Conceptualization, Methodology, Formal analysis, Data curation, Writing-Original draft, Visualization.

Heather L. Major: Conceptualization, Methodology, Formal analysis, Resources, Writing-Review & editing, Supervision, Project administration.

Alexander L. Bond: Conceptualization, Methodology, Investigation, Formal analysis, Resources, Data curation, Writing-Review & editing, Supervision, Project administration, Funding acquisition.

Antony W. Diamond: Investigation, Resources, Writing-Review & editing, Funding acquisition.

Ian L. Jones: Investigation, Resources, Writing-Review & editing, Funding acquisition.
William A. Montevecchi: Investigation, Resources, Writing-Review & editing, Funding acquisition.

Jennifer F. Provencher: Investigation, Resources, Writing-Review & editing, Funding acquisition.

Gregory J. Robertson: Investigation, Resources, Writing-Review & editing, Funding acquisition.

Funding statement

KJL was supported by a Foley-Woodroffe Scholarship during his B.Sc. Environment and Climate Change Canada (GJR, ALB, JFP), the Atlantic Cooperative Wildlife Ecology Research Network (AWD, ILJ, ALB), the Natural Sciences and Engineering Research Council of Canada (WAM, ALB), the New Brunswick Wildlife Trust Fund, and the Northern Scientific Training Program of Crown-Indigenous Relations and Northern Affairs Canada funded this research.

Data availability

Data are provided in the Supplementary Information.
References


mismatch between predator requirements and resource availability. Clim. Res. 33: 271–
283. doi:10.3354/cr033271.

Fana, N. 2019. Effects of environmental conditions on egg-laying dates in Atlantic Puffin
Fratercula arctica. B.Sc. thesis, University of New Brunswick, Saint John, N.B.

in migration route and female winter foraging effort predict pair breeding performance in

peak food availability, and consequent breeding adjustment in a marine bird: a case of

migration in the Atlantic Puffin and its implications for migratory navigation. PLoS
ONE, 6(7): e21336. doi: 10.1371/journal.pone.0021336.

Hipfner, J.M. 2008. Matches and mismatches: ocean climate, prey phenology and breeding
10.3354/meps07603.

Hoegh-Guldberg, O., and Bruno., J.F. 2010. The impact of climate change on the world’s marine


Jessopp, M.J., Cronin, M., Doyle, T.K., Wilson, M., McQuatters-Gollop, A., Newton, S., and
Phillips, R.A. 2013. Transatlantic migration by post-breeding puffins: a strategy to


Figure 1. Atlantic Puffin (*Fratercula arctica* Linnaeus, 1758) colonies in the western North Atlantic from which eggs were measured in the Bay of Fundy (Machias Seal Island [MSI]), the Gulf of St Lawrence (Bird Rocks [BR], Île Brion [IB], Île de Mingen [IM], Île Sainte-Marie [ISM]), Newfoundland (Baccalieu Island [BA], Wolf Island [WI], Witless Bay [WB]), and Labrador (Gannet Islands [GI]). Map created in R version 4.0.2 (R Core Team 2020). Map data: Natural Earth (available from https://www.naturalearthe-data.com/).

Figure 2. Atlantic Puffin (*Fratercula arctica* Linnaeus, 1758) egg volume in the Bay of Fundy, the Gulf of St Lawrence, Newfoundland, and Labrador (1877–2016). Solid blue lines are cubic splines from general additive mixed-effects models with 95% confidence intervals in light blue. Figure created in R version 4.0.2 (R Core Team 2020).
Table 1. Mean ± standard deviation, median, and range of Atlantic Puffin (*Fratercula arctica* Linnaeus, 1758) egg volume (cm$^3$) in the Bay of Fundy, the Gulf of St Lawrence, Newfoundland, and Labrador (1877–2016).

<table>
<thead>
<tr>
<th>Region</th>
<th>n</th>
<th>Mean ± sd</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay of Fundy</td>
<td>157</td>
<td>61.5 ± 4.4</td>
<td>62.1</td>
<td>50.9–73.1</td>
</tr>
<tr>
<td>Gulf of St Lawrence</td>
<td>143</td>
<td>63.2 ± 4.4</td>
<td>63.2</td>
<td>50.3–76.8</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>653</td>
<td>62.7 ± 4.4</td>
<td>63.0</td>
<td>44.0–80.0</td>
</tr>
<tr>
<td>Labrador</td>
<td>851</td>
<td>64.0 ± 4.8</td>
<td>63.8</td>
<td>45.0–77.9</td>
</tr>
<tr>
<td>All Regions</td>
<td>1804</td>
<td>63.3 ± 4.7</td>
<td>63.2</td>
<td>44.0–80.0</td>
</tr>
</tbody>
</table>