• A 5-Year intervention study on elimination of urogenital schistosomiasis in Zanzibar: Parasitological results of annual cross-sectional surveys

      Knopp, S; Ame, SM; Person, B; Hattendorf, J; Rabone, M; Juma, S; Muhsin, J; Khamis, IS; Hollenberg, E; Mohammed, KA; et al. (Public Library of Science (PLoS), 2019-05-06)
      Background The Zanzibar Elimination of Schistosomiasis Transmission (ZEST) project aimed to eliminate urogenital schistosomiasis as a public health problem from Pemba and to interrupt Schistosoma haematobium transmission from Unguja in 5 years. Methodology A repeated cross-sectional cluster-randomized trial was implemented from 2011/12 till 2017. On each island, 45 shehias were randomly assigned to receive one of three interventions: biannual mass drug administration (MDA) with praziquantel alone, or in combination with snail control or behavior change measures. In cross-sectional surveys, a single urine sample was collected from ~9,000 students aged 9- to 12-years and from ~4,500 adults aged 20- to 55-years annually, and from ~9,000 1st year students at baseline and the final survey. Each sample was examined for S. haematobium eggs by a single urine filtration. Prevalence and infection intensity were determined. Odds of infection were compared between the intervention arms. Principal findings Prevalence was reduced from 6.1% (95% confidence interval (CI): 4.5%-7.6%) to 1.7% (95% CI: 1.2%-2.2%) in 9- to 12-year old students, from 3.9% (95% CI: 2.8%-5.0%) to 1.5% (95% CI: 1.0%-2.0%) in adults, and from 8.8% (95% CI: 6.5%-11.2%) to 2.6% (95% CI: 1.7%-3.5%) in 1st year students from 2011/12 to 2017. In 2017, heavy infection intensities occurred in 0.4% of 9- to 12-year old students, 0.1% of adults, and 0.8% of 1st year students. Considering 1st year students in 2017, 13/45 schools in Pemba and 4/45 schools in Unguja had heavy infection intensities >1%. There was no significant difference in prevalence between the intervention arms in any study group and year. Conclusions/Significance Urogenital schistosomiasis was eliminated as public health problem from most sites in Pemba and Unguja. Prevalence was significantly reduced, but transmission was not interrupted. Continued interventions that are adaptive and tailored to the micro-epidemiology of S. haematobium in Zanzibar are needed to sustain and advance the gains made by ZEST.
    • Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Annelida: Capitellidae, Opheliidae, Scalibregmatidae, and Travisiidae

      Wiklund, H; Neal, L; Glover, AG; Drennan, Regan; Rabone, M; Dahlgren, TG (Pensoft Publishers, 2019-10-28)
      We present DNA taxonomy of abyssal polychaete worms from the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruises ‘AB01’ and ‘AB02’ to the UK Seabed Resources Ltd (UKSRL) polymetallic nodule exploration contract area ‘UK-1’, the Ocean Mineral Singapore exploration contract area ‘OMS-1’ and an Area of Particular Environmental Interest, ‘APEI-6’. This is the fourth paper in a series to provide regional taxonomic data with previous papers reporting on Cnidaria, Echinodermata and Mollusca. Taxonomic data are presented for 23 species from 85 records within four polychaete families: Capitellidae, Opheliidae, Scalibregmatidae and Travisiidae, identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. Two taxa (genetically separated from one another) morphologically matched the same known cosmopolitan species, Ophelina abranchiata that has a type locality in a different ocean basin and depth from where no genetic data was available. These two species were assigned the open nomenclature ‘cf.’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. Twelve (12) taxa are here described as new species, Ammotrypanella keenani sp. nov., Ammotrypanella kersteni sp. nov., Ophelina curli sp. nov., Ophelina ganae sp. nov., Ophelina juhazi sp. nov., Ophelina martinezarbizui sp. nov., Ophelina meyerae sp. nov., Ophelina nunnallyi sp. nov., Oligobregma brasierae sp. nov., Oligobregma tani sp. nov., Oligobregma whaleyi sp. nov. and Travisia zieglerae sp. nov. For the remaining nine taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The CCZ is a region undergoing intense exploration for potential deep-sea mineral extraction from polymetallic nodules. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.
    • Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria

      Dahlgren, T; Wiklund, H; Rabone, M; Amon, D; Ikebe, C; Watling, L; Smith, C; Glover, AG (2016-06-30)
    • Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca

      Wiklund, H; Taylor, JD; Dahlgren, TG; Todt, C; Ikebe, C; Rabone, M; Glover, AG (2017-10-10)
    • Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata

      Glover, AG; Wiklund, H; Rabone, M; Amon, D; Smith, C; O'Hara, T; Mah, C; Dahlgren, Thomas (2016-01-25)
      We present data from a DNA taxonomy register of the abyssal benthic Echinodermata collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration claim ‘UK-1’ in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. Morphological and genetic data are presented for 17 species (4 Asteroidea, 4 Crinoidea, 2 Holothuroidea and 7 Ophiuroidea) identified by a combination of morphological and genetic data. No taxa matched previously published genetic sequences, but 8 taxa could be assigned to previously-described species based on morphology, although here we have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.
    • Access to Marine Genetic Resources (MGR): Raising Awareness of Best-Practice Through a New Agreement for Biodiversity Beyond National Jurisdiction (BBNJ)

      Rabone, M; Harden-Davies, H; Collins, JE; Zajderman, S; Appeltans, W; Droege, G; Brandt, A; Pardo-Lopez, L; Dahlgren, TG; Glover, AG; et al. (Frontiers Media SA, 2019-09-03)
      Better scientific knowledge of the poorly-known deep sea and areas beyond national jurisdiction (ABNJ) is key to its conservation, an urgent need in light of increasing environmental pressures. Access to marine genetic resources (MGR) for the biodiversity research community is essential to allow these environments to be better characterised. Negotiations have commenced under the auspices of the United Nations Convention on the Law of the Sea (UNCLOS) to develop a new treaty to further the conservation and sustainable use of marine biological diversity in ABNJ. It is timely to consider the relevant issues with the development of the treaty underway. Currently uncertainties surround the legal definition of MGR and scope of related benefit-sharing, against a background of regional and global governance gaps in ABNJ. These complications are mirrored in science, with recent major advances in the field of genomics, but variability in handling of the resulting increasing volumes of data. Here, we attempt to define the concept of MGR from a scientific perspective, review current practices for the generation of and access to MGR from ABNJ in the context of relevant regulations, and illustrate the utility of best-practice with a case study. We contribute recommendations with a view to strengthen best-practice in accessibility of MGR, including: funder recognition of the central importance of taxonomy/biodiversity research; support of museums/collections for long-term sample curation; open access to data; usage and further development of globally recognised data standards and platforms; publishing of datasets via open-access, quality controlled and standardised data systems and open access journals; commitment to best-practice workflows; a global registry of cruises; and lastly development of a clearing house to further centralised access to the above. We argue that commitment to best-practice would allow greater sharing of MGR for research and extensive secondary use including conservation and environmental monitoring, and provide an exemplar for access and benefit-sharing (ABS) to inform the biodiversity beyond national jurisdiction (BBNJ) process.
    • Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium

      Webster, BL; Rabone, M; Pennance, T; Emery, AM; Allan, F; Gouvras, A; Knopp, S; Garba, A; Hamidou, AA; Mohammed, KA; et al. (2015-12)
    • Erratum to: Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium

      Webster, BL; Rabone, M; Pennance, T; Emery, AM; Allan, F; Gouvras, A; Knopp, S; Garba, A; Hamidou, AA; Mohammed, KA; et al. (2015-12)
    • Molecular characterization and distribution of Schistosoma cercariae collected from naturally infected bulinid snails in northern and central Côte d’Ivoire

      Tian-Bi, Y-NT; Webster, BL; Konan, CK; Allan, F; Diakité, NR; Ouattara, M; Salia, D; Koné, A; Kakou, AK; Rabone, M; et al. (Springer Nature, 2019-03-19)
      Accurate identification of schistosome species infecting intermediate host snails is important for understanding parasite transmission, schistosomiasis control and elimination. Cercariae emerging from infected snails cannot be precisely identified morphologically to the species level. We used molecular tools to clarify the distribution of the Schistosoma haematobium group species infecting bulinid snails in a large part of Côte d’Ivoire and confirmed the presence of interspecific hybrid schistosomes. Methods Between June 2016 and March 2017, Bulinus snails were sampled in 164 human-water contact sites from 22 villages of the northern and central parts of Côte d’Ivoire. Multi-locus genetic analysis (mitochondrial cox1 and nuclear ITS) was performed on individual schistosome cercariae shed from snails, in the morning and in the afternoon, for species and hybrid identification. Results Overall, 1923 Bulinus truncatus, 255 Bulinus globosus and 1424 Bulinus forskalii were obtained. Among 2417 Bulinus screened, 25 specimens (18 B. truncatus and seven B. globosus) shed schistosomes, with up to 14% infection prevalence per site and time point. Globally, infection rates per time point ranged between 0.6 and 4%. Schistosoma bovis, S. haematobium and S. bovis × S. haematobium hybrids infected 0.5%, 0.2% and 0.4% of the snails screened, respectively. Schistosoma bovis and hybrids were more prevalent in B. truncatus, whereas S. haematobium and hybrid infections were more prevalent in B. globosus. Schistosoma bovis-infected Bulinus were predominantly found in northern sites, while S. haematobium and hybrid infected snails were mainly found in central parts of Côte d’Ivoire. Conclusions The data highlight the necessity of using molecular tools to identify and understand which schistosome species are transmitted by specific intermediate host snails. The study deepens our understanding of the epidemiology and transmission dynamics of S. haematobium and S. bovis in Côte d’Ivoire and provides the first conclusive evidence for the transmission of S. haematobium × S. bovis hybrids in this West African country. Trial registration ISRCTN, ISRCTN10926858. Registered 21 December 2016; retrospectively registered (see: http://www.isrctn.com/ISRCTN10926858)
    • Praziquantel coverage in schools and communities targeted for the elimination of urogenital schistosomiasis in Zanzibar: a cross-sectional survey

      Knopp, S; Person, B; Ame, SM; Ali, SM; Muhsin, J; Juma, S; Khamis, IS; Rabone, M; Blair, L; Fenwick, A; et al. (2016-12)
    • Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission

      Wood, CL; Sokolow, SH; Jones, IJ; Chamberlin, AJ; Lafferty, KD; Kuris, AM; Jocque, M; Hopkins, S; Adams, G; Buck, JC; et al. (Proceedings of the National Academy of Sciences, 2019-10-28)
      Recently, the World Health Organization recognized that efforts to interrupt schistosomiasis transmission through mass drug administration have been ineffective in some regions; one of their new recommended strategies for global schistosomiasis control emphasizes targeting the freshwater snails that transmit schistosome parasites. We sought to identify robust indicators that would enable precision targeting of these snails. At the site of the world’s largest recorded schistosomiasis epidemic—the Lower Senegal River Basin in Senegal—intensive sampling revealed positive relationships between intermediate host snails (abundance, density, and prevalence) and human urogenital schistosomiasis reinfection (prevalence and intensity in schoolchildren after drug administration). However, we also found that snail distributions were so patchy in space and time that obtaining useful data required effort that exceeds what is feasible in standard monitoring and control campaigns. Instead, we identified several environmental proxies that were more effective than snail variables for predicting human infection: the area covered by suitable snail habitat (i.e., floating, nonemergent vegetation), the percent cover by suitable snail habitat, and size of the water contact area. Unlike snail surveys, which require hundreds of person-hours per site to conduct, habitat coverage and site area can be quickly estimated with drone or satellite imagery. This, in turn, makes possible large-scale, high-resolution estimation of human urogenital schistosomiasis risk to support targeting of both mass drug administration and snail control efforts.