• The genus Orionis Shaw (Hymenoptera, Braconidae, Euphorinae) in the Old World

      Broad, G; Stigenberg, Julia (Pensoft Publishers, 2021-12-30)
      The euphorine braconid genus Orionis Shaw, 1987 is found to be more diverse in the Old World than had previously been recognised. Orionis was regarded previously as largely Neotropical, with one Oriental species (Orionis orientalis Shimbori & Shaw, 2016) known from Thailand, but we recognise an additional three species from the Oriental and Palaearctic regions. Three species of Euphorinae are transferred to Orionis Shaw, 1987 and are new combinations: Orionis coxator (Belokobylskij, 1995), comb. nov., Orionis erratus (Chen & van Achterberg, 1997), comb. nov., and Orionis flavifacies (Belokobylskij, 2000), comb. nov. Previously known from the Far Eastern Palaearctic, O. coxator has surprisingly been found in Europe, in Belgium, England and the Netherlands. The inclusion of these species in Orionis whereas most previous species have been described from the Neotropics, is justified by Bayesian analysis of the D2 region of 28S, Cytochrome Oxidase I barcode sequences, and morphology.
    • Pre‐ and postzygotic mechanisms preventing hybridization in co‐occurring species of the Impatiens purpureoviolacea complex

      Abrahamczyk, Stefan; Jandová, Michaela; Líblová, Zuzana; Janssens, Steven B; Dostálek, Tomáš; Holstein, Norbert; Fischer, Eberhard (Wiley, 2021-11-24)
      In the species-rich genus Impatiens, few natural hybrids are known, even though closely related species often occur sympatrically. In this study, we aim to bridge the gap between micro- and macro-evolution to disentangle pre- and postzygotic mechanisms that may prevent hybridization in the Impatiens purpureoviolacea complex from Central Africa. We analyzed habitat types, species distribution, pollination syndromes, pollinator dependency, genome sizes, and chromosome numbers of seven out of the ten species of the complex as well as of one natural hybrid and reconstructed the ancestral chromosome numbers of the complex. Several species of the complex occur in sympatry or geographically very close to each other. All of them are characterized by pre- and/or postzygotic mechanisms potentially preventing hybridization. We found four independent polyploidization events within the complex. The only known natural hybrid always appears as single individual and is self-fertile. But the plants resulting from self-pollinated seeds often die shortly after first flowering. These results indicate that the investigated mechanisms in combination may effectively but not absolutely prevent hybridization in Impatiens and probably occur in other genera with sympatric species as well.
    • Prediction of shoreline–shelf depositional process regime guided by palaeotidal modelling

      Collins, Daniel S; Avdis, Alexandros; Wells, Martin R; Dean, Christopher; Mitchell, Andrew J; Allison, Peter A; Johnson, Howard D; Hampson, Gary J; Hill, Jon; Piggott, Matthew D (Elsevier BV, 2021-10-29)
      Ancient shoreline–shelf depositional systems are influenced by an unusually wide array of geological, biological and hydrodynamic processes, with sediment transport and deposition primarily determined by the interaction of river, wave (including storm) and tidal processes, and changes in relative sea level. Understanding the impact of these processes on shoreline–shelf morphodynamics and stratigraphic preservation remains challenging. Numerical modelling integrated with traditional facies analysis provides an increasingly viable approach, with the potential to quantify, and thereby improve understanding of, the impact of these complex coastal sedimentary processes. An integrated approach is presented here that focuses on palaeotidal modelling to investigate the controls on ancient tides and their influence on sedimentary deposition and preservation – one of the three cornerstones of the ternary process classification scheme of shoreline-shelf systems. Numerical tidal modelling methodology is reviewed and illustrated in three palaeotidal model case studies of different scales and focus. The results are synthesised in the context of shoreline–shelf processes, including a critique and modification of the process-based classification scheme. The emphasis on tidal processes reflects their global importance throughout Earth’s history. Ancient palaeotidal models are able to highlight and quantify the following four controls on tidal processes: (1) the physiography (shape and depth) of oceans (1000s km scale) determines the degree of tidal resonance; (2) the physiography of ocean connections to partly enclosed water bodies (100–1000s km scale) determines the regional-scale flux of tidal energy (inflow versus outflow); (3) the physiography of continental shelves influences shelf tidal resonance potential; and (4) tides in relatively local-scale embayments (typically 1–10s km scale) are influenced by the balance of tidal amplification due to funnelling, shoaling and resonance effects versus frictional damping. In deep time, palaeogeographic and palaeobathymetric uncertainty can be accounted for in palaeotidal models by performing sensitivity analyses to different scenarios, across this range of spatial scales. These tidal process controls are incorporated into an updated predictive decision tree for determining shoreline–shelf process regime in terms of the relative interaction of wave, fluvial and tidal processes. The predictive decision tree considers the effects of basin physiography, shelf width and shoreline morphology on wave, fluvial and tidal processes separately. Uncertainty and ambiguity in applying the widely used three-tier process classification scheme are reduced by using the decision tree in conjunction with a proposed two-tier classification of process regime that is limited to primary and secondary processes. This two-tier classification scheme is illustrated in the three case studies, showing how integration of numerical modelling with facies analysis of the preserved stratigraphic record improves confidence in prediction of tide-influenced shoreline-shelf process regimes. Wider application of this approach will further improve process-based classifications and predictions of modern and ancient shoreline–shelf systems.
    • Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

      De Palma, A; Hoskins, Andrew; Gonzalez, Ricardo E; Börger, Luca; Newbold, Tim; Sanchez-Ortiz, Katia; Ferrier, Simon; Purvis, A (Springer Science and Business Media LLC, 2021-10-12)
      Few biodiversity indicators are available that reflect the state of broad-sense biodiversity—rather than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries’ rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region.
    • A Minimally Morphologically Destructive Approach for DNA Retrieval and Whole-Genome Shotgun Sequencing of Pinned Historic Dipteran Vector Species

      Korlević, Petra; McAlister, Erica; Mayho, Matthew; Makunin, Alex; Flicek, Paul; Lawniczak, Mara KN (Oxford University Press (OUP), 2021-10-01)
      Abstract: Museum collections contain enormous quantities of insect specimens collected over the past century, covering a period of increased and varied insecticide usage. These historic collections are therefore incredibly valuable as genomic snapshots of organisms before, during, and after exposure to novel selective pressures. However, these samples come with their own challenges compared with present-day collections, as they are fragile and retrievable DNA is low yield and fragmented. In this article, we tested several DNA extraction procedures across pinned historic Diptera specimens from four disease vector genera: Anopheles, Aedes, Culex, and Glossina. We identify an approach that minimizes morphological damage while maximizing DNA retrieval for Illumina library preparation and sequencing that can accommodate the fragmented and low yield nature of historic DNA. We identify several key points in retrieving sufficient DNA while keeping morphological damage to a minimum: an initial rehydration step, a short incubation without agitation in a modified low salt Proteinase K buffer (referred to as “lysis buffer C” throughout), and critical point drying of samples post-extraction to prevent tissue collapse caused by air drying. The suggested method presented here provides a solid foundation for exploring the genomes and morphology of historic Diptera collections.
    • The locomotion of extinct secondarily aquatic tetrapods

      Gutarra, Susana; Rahman, Imran (Wiley, 2021-09-06)
      The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
    • Evolution of Impatiens (Balsaminaceae) in the Albertine Rift – The endemic Impatiens purpureoviolacea complex consists of ten species

      Fischer, Eberhard; Abrahamczyk, Stefan; Holstein, Norbert; Janssens, Steven B (Wiley, 2021-09-06)
      The Albertine Rift harbours a highly diverse flora with numerous endemic species. An important component of the forestunderstorey is the herbaceous genusImpatiens. Fieldwork in Burundi, the Democratic Republic of the Congo and Rwanda as well asmorphological studies indicated that the Albertine Rift endemicImpatiens purpureoviolacearepresents a species complex. We ana-lyzed the hidden diversity of the complex using morphological and molecular data supplemented by herbarium studies. We found thattheImpatiens purpureoviolaceacomplex can be divided into morphologically and phylogenetically well characterized clades contain-ing ten species and a natural hybrid. We describe all of these species, provide a species key and analyze their evolutionary history.BesideImpatiens purpureoviolaceaandI. gesneroidea, the already describedI. urundiensisis resurrected from synonymy. Two va-rieties,Impatiens purpureoviolaceavar.longicalcarataandI. gesneroideavar.superglabraare raised to species status, and five newspecies (Impatiens elwiraurzulae,I. lotteri,I. ludewigii,I. lutzmannii,I. versicolor) and a new natural hybrid (I. ×troupinii) are de-scribed. Within the mostly insect-pollinated species of the clade, two bird-pollinated species (Impatiens gesneroidea,I. super-glabra) evolved independently. The clade split from its sister taxon in the Pliocene and started diversifying during the Pliocene/Pleistocene transition in parallel to an increased mountain uplifting and volcanic activity in the Albertine Rift. It further diversifiedduring the Pleistocene, likely due to the changes in forest cover and connectivity induced by climatic fluctuations.
    • Petrological and geochemical characterisation of the sarsen stones at Stonehenge

      Nash, David J; Ciborowski, T Jake R; Darvill, Timothy; Parker Pearson, Mike; Ullyott, J Stewart; Damaschke, Magret; Evans, Jane A; Goderis, Steven; Greaney, Susan; Huggett, Jennifer M; et al. (Public Library of Science (PLoS), 2021-08-04)
      Little is known of the properties of the sarsen stones (or silcretes) that comprise the main architecture of Stonehenge. The only studies of rock struck from the monument date from the 19th century, while 20th century investigations have focussed on excavated debris without demonstrating a link to specific megaliths. Here, we present the first comprehensive analysis of sarsen samples taken directly from a Stonehenge megalith (Stone 58, in the centrally placed trilithon horseshoe). We apply state-of-the-art petrographic, mineralogical and geochemical techniques to two cores drilled from the stone during conservation work in 1958. Petrographic analyses demonstrate that Stone 58 is a highly indurated, grain-supported, structureless and texturally mature groundwater silcrete, comprising fine-to-medium grained quartz sand cemented by optically-continuous syntaxial quartz overgrowths. In addition to detrital quartz, trace quantities of silica-rich rock fragments, Fe-oxides/hydroxides and other minerals are present. Cathodoluminescence analyses show that the quartz cement developed as an initial <10 μm thick zone of non-luminescing quartz followed by ~16 separate quartz cement growth zones. Late-stage Fe-oxides/hydroxides and Ti-oxides line and/or infill some pores. Automated mineralogical analyses indicate that the sarsen preserves 7.2 to 9.2 area % porosity as a moderately-connected intergranular network. Geochemical data show that the sarsen is chemically pure, comprising 99.7 wt. % SiO2. The major and trace element chemistry is highly consistent within the stone, with the only magnitude variations being observed in Fe content. Non-quartz accessory minerals within the silcrete host sediments impart a trace element signature distinct from standard sedimentary and other crustal materials. 143Nd/144Nd isotope analyses suggest that these host sediments were likely derived from eroded Mesozoic rocks, and that these Mesozoic rocks incorporated much older Mesoproterozoic material. The chemistry of Stone 58 has been identified recently as representative of 50 of the 52 remaining sarsens at Stonehenge. These results are therefore representative of the main stone type used to build what is arguably the most important Late Neolithic monument in Europe.
    • Measuring nest incorporation of anthropogenic debris by seabirds: An opportunistic approach increases geographic scope and reduces costs

      O'Hanlon, Nina J; Bond, AL; Masden, Elizabeth A; Lavers, Jennifer L; James, Neil A (Elsevier BV, 2021-07-14)
      Data on the prevalence of anthropogenic debris in seabird nests can be collected alongside other research or through community science initiatives to increase the temporal and spatial scale of data collection. To assess the usefulness of this approach, we collated data on nest incorporation of debris for 14 seabird species from 84 colonies across five countries in northwest Europe. Of 10,274 nests monitored 12% contained debris, however, there was large variation in the proportion of nests containing debris among species and colonies. For several species, the prevalence of debris in nests was significantly related to the mean Human Footprint Index (HFI), a proxy for human impact on the environment, within 100 km of the colony. Collecting opportunistic data on nest incorporation of debris by seabirds provides a cost-effective method of detecting changes in the prevalence of debris in the marine environment across a large geographic scale.
    • Petrographic and chemical studies of the Cretaceous-Paleogene boundary sequence at El Guayal, Tabasco, Mexico: Implications for ejecta plume evolution from the Chicxulub impact crater

      Salge, T; Tagle, Roald; Schmitt, Ralf-Thomas; Hecht, Lutz; Wolf Uwe, Reimold; Chris, Koeberl (Geological Society of America, 2021-06-30)
      A combined petrographic and chemical study of ejecta particles from the Cretaceous-Paleogene boundary sequence of El Guayal, Tabasco, Mexico (520 km SW of Chicxulub crater), was carried out to assess their formation conditions and genetic relation during the impact process. The reaction of silicate ejecta particles with hot volatiles during atmospheric transport may have induced alteration processes, e.g., silicification and cementation, observed in the ejecta deposits. The various microstructures of calcite ejecta particles are interpreted to reflect different thermal histories at postshock conditions. Spherulitic calcite particles may represent carbonate melts that were quenched during ejection. A recrystallized microstructure may indicate short, intense thermal stress. Various aggregates document particle-particle interactions and intermixing of components from lower silicate and upper sedimentary target lithologies. Aggregates of recrystallized calcite with silicate melt indicate the consolidation of a hot suevitic component with sediments at ≳750 °C. Accretionary lapilli formed in a turbulent, steam-condensing environment at ~100 °C by aggregation of solid, ash-sized particles. Concentric zones with smaller grain sizes of accreted particles indicate a recurring exchange with a hotter environment. Our results suggest that during partial ejecta plume collapse, hot silicate components were mixed with the fine fraction of local surface-derived sediments, the latter of which were displaced by the preceding ejecta curtain. These processes sustained a hot, gas-driven, lateral basal transport that was accompanied by a turbulent plume at a higher level. The exothermic back-reaction of CaO from decomposed carbonates and sulfates with CO2 to form CaCO3 may have been responsible for a prolonged release of thermal energy at a late stage of plume evolution.
    • Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America

      Maidment, Susannah; Dean, Christopher; Mansergh, Robert I; Butler, Richard J (The Royal Society, 2021-06-30)
      In order for palaeontological data to be informative to ecologists seeking to understand the causes of today's diversity patterns, palaeontologists must demonstrate that actual biodiversity patterns are preserved in our reconstructions of past ecosystems. During the Late Cretaceous, North America was divided into two landmasses, Laramidia and Appalachia. Previous work has suggested strong faunal provinciality on Laramidia at this time, but these arguments are almost entirely qualitative. We quantitatively investigated faunal provinciality in ceratopsid and hadrosaurid dinosaurs using a biogeographic network approach and investigated sampling biases by examining correlations between dinosaur occurrences and collections. We carried out a model-fitting approach using generalized least-squares regression to investigate the sources of sampling bias we identified. We find that while the raw data strongly support faunal provinciality, this result is driven by sampling bias. The data quality of ceratopsids and hadrosaurids is currently too poor to enable fair tests of provincialism, even in this intensively sampled region, which probably represents the best-known Late Cretaceous terrestrial ecosystem on Earth. To accurately reconstruct biodiversity patterns in deep time, future work should focus on smaller scale, higher resolution case studies in which the effects of sampling bias can be better controlled.
    • Six new species of Handaoia Seyrig, 1952 (Hymenoptera, Ichneumonidae, Phygadeuontinae): the first to be described from the New World

      Bordera, Santiago; Broad, G (Museum National D'Histoire Naturelle, 2021-06-30)
      Handaoia Seyrig, 1952 is a small genus of Phygadeuontinae currently represented by eleven described species from Madagascar, Tanzania and Europe, and can be recognized by the combination of the distally expanded and ventrally flattened antennal flagellum, complete posterior transverse carina of the mesosternum, isolated ‘pit’ (episternal scrobe) in the mesopleuron, and a single bulla in fore wing vein 2m-cu. Most species have a distinctive combined area basalis and area superomedia on the propodeum. The following six new species from Central and South America are described and illustrated: H. cuscoensis Bordera sp. nov. from Peru, H. fritzi sp. nov. from Brazil, H. mercedensis Bordera sp. nov. from Peru, H. plaumanni sp. nov. from Brazil, H. ruizcancinoi Bordera sp. nov. from Mexico, and H. urceus sp. nov. from Brazil. A key to the New World species is provided.
    • The early death of Colonel Robert C. Tytler and the afterlife of his collection

      Prys-Jones, Robert; Harding, Alison C; Rooke, Kathryn (British Ornithologists' Club, 2021-06-15)
      A letter by Allan Octavian Hume and three by Bertram Bevan-Petman, all written between 1904 and 1911 to Ernst Hartert, bird curator of Rothschild’s Tring Museum, are present in the Rothschild Tring archive, now held by the Natural History Museum. These shed light on both the probable cause of the early death in 1872 of Colonel Robert C. Tytler, British army officer and naturalist in colonial India, and on the somewhat convoluted fate of his collection subsequently.
    • Step by step towards citizen science — deconstructing youth participation in BioBlitzes

      Lorke, Julia; Ballard, Heidi L; Miller, Annie E; Swanson, Rebecca D; Pratt-Taweh, Sasha; Jennewein, Jessie N; Higgins, Lila; Johnson, Rebecca F; Young, Alison N; Ghadiri Khanaposhtani, Maryam; et al. (Sissa Medialab Srl, 2021-06-14)
      BioBlitzes, typically one-day citizen science (CS) events, provide opportunities for the public to participate in data collection for research and conservation, potentially promoting deeper engagement with science. We observed 81 youth at 15 BioBlitzes in the U.S. and U.K., identifying five steps participants use to create a biological record (Exploring, Observing, Identifying, Documenting and Recording). We found 67 youth engaged in at least one of the steps, but seldom in all, with rare participation in Recording which is crucial for contributing data to CS. These findings suggest BioBlitzes should reduce barriers to Recording for youth to increase engagement with science.
    • Towards redressing inaccurate, offensive and inappropriate common bird names

      Driver, Robert J; Bond, AL (Wiley, 2021-06-07)
      English common names are widely used in ornithological research, birding, media and by the general public and, unlike other taxa, often receive considerably greater use than scientific names. Across the world, many of these names were coined from 18th and 19th century European perspectives and are symbolic of a time when this was the only worldview considered in science. Here, we highlight formal efforts by ornithological societies around the world to change common names of birds to better reflect the diverse perspectives of scientists in the 21st century. We focus on particular case studies from regions with a history of colonialism, including South Africa and North America, as well as the successful implementation of Indigenous bird names in New Zealand. In addition to detailing independent and repeated efforts by different ornithological communities to address culturally inappropriate English common names, we discuss dissention and debate in North America regarding these changes. The continued use of problematic common names must change if we wish to create a more diverse and inclusive discipline.
    • Plastic debris increases circadian temperature extremes in beach sediments

      Lavers, Jennifer L; Rivers-Auty, Jack; Bond, AL (Elsevier BV, 2021-05-17)
      Plastic pollution is the focus of substantial scientific and public interest, leading many to believe the issue is well documented and managed, with effective mitigation in place. However, many aspects are poorly understood, including fundamental questions relating to the scope and severity of impacts (e.g., demographic consequences at the population level). Plastics accumulate in significant quantities on beaches globally, yet the consequences for these terrestrial environments are largely unknown. Using real world, in situ measurements of circadian thermal fluctuations of beach sediment on Henderson Island and Cocos (Keeling) Islands, we demonstrate that plastics increase circadian temperature extremes. Particular plastic levels were associated with increases in daily maximum temperatures of 2.45 °C and decreases of daily minimum by − 1.50 °C at 5 cm depth below the accumulated plastic. Mass of surface plastic was high on both islands (Henderson: 571 ± 197 g/m2; Cocos: 3164 ± 1989 g/m2), but did not affect thermal conductivity, specific heat capacity, thermal diffusivity, or moisture content of beach sediments. Therefore, we suggest plastic effects sediment temperatures by altering thermal inputs and outputs (e.g., infrared radiation absorption). The resulting circadian temperature fluctuations have potentially significant implications for terrestrial ectotherms, many of which have narrow thermal tolerance limits and are functionally important in beach habitats.
    • The Phylogenetics and Biogeography of the Central Asian Hawkmoths, Hyles hippophaes and H. chamyla: Can Mitogenomics and Machine Learning Bring Clarity?

      Patzold, Franziska; Marabuto, Eduardo; Daneck, Hana; O’Neill, Mark A; Kitching, I; Hundsdoerfer, Anna K (MDPI AG, 2021-05-17)
      The western Palaearctic species of the hawkmoth genus Hyles (Lepidoptera: Sphingidae) have long been the subject of molecular phylogenetic research. However, much less attention has been paid to the taxa inhabiting the central and eastern Palaearctic, particularly Central Asia, where almost 50% of the species diversity of the genus occurs. Yet, many taxonomic conundrums hinder a proper assessment of the true diversity in these moths. One still unresolved group of species includes Hyles hippophaes and Hyles chamyla. Despite a largely overlapping morphology and ecology, a plethora of infraspecific taxa display some unique divergent characters over a wide geographical area. In this study, we undertook a taxonomic assessment of each population and resolved this species complex using an integrative approach. A combination of new computational techniques (DAISY-II) in comparative morphology and recent advances in DNA extraction methods and sequencing of museum specimens (WISC) alongside more traditional genetic approaches allowed testing of the three main phenotypes—bienerti, chamyla and apocyni—in terms of their morphological, mitochondrial and biogeographical integrity, and to elucidate their evolutionary relationships. Our results support the existence of two closely related species, Hyles chamyla and H. hippophaes, but the former species H. apocyni (here discussed as the ecological form apocyni of H. chamyla) is best regarded as a hybrid between H. chamyla and H. h. bienerti. The results indicate that the evolutionary relationship between H. chamyla and H. hippophaes is one of admixture in the context of ongoing ecological differentiation, which has led to shared morphological characters and a blurring of the species boundaries. These results clarify the evolutionary relationships of this species complex and open future research lines, including the analysis of nuclear markers and denser sampling, particularly of H. hippophaes and H. vespertilio in western Europe.
    • Plastics in regurgitated Flesh-footed Shearwater (Ardenna carneipes) boluses as a monitoring tool

      Bond, AL; Hutton, Ian; Lavers, Jennifer L (Elsevier BV, 2021-04-30)
      Plastic production and pollution of the environment with plastic items is rising rapidly and outpacing current mitigation measures. Success of mitigation actions can only be determined if progress can be measured reliably through incorporation of specific, measurable targets. Here we evaluate temporal changes in the amount and composition of plastic in boluses from Flesh-footed Shearwaters during 2002-2020 and assess their suitability for measuring progress against national and international commitments to reduce plastic pollution. Plastic in the shearwater boluses showed a generally decreasing pattern from 2002 to 2015 and increasing again to 2020. The colour and type of plastics in boluses was comparable to items recovered from live and necropsied birds, but a much smaller sample size (~35 boluses/year) was required to detect changes in plastic number and mass over time. We therefore suggest shearwater boluses are a low-effort, high-statistical power monitoring tool for quantifying progress against environmental policies in Australia.
    • The easternmost record of Macratriinae LeConte, 1862 (Coleoptera: Anthicidae), with a new species from Fiji and a genus-rank synonymy in Macratriini LeConte, 1862

      Telnov, Dmitry (Magnolia Press, 2021-04-27)
      The easternmost record of Macratria Newman, 1838 from Fiji is presented, and M. fijiana sp. nov. is described and illustrated. Biogeographical patterns and diversity of Pacific Macratriinae are briefly discussed. Additionally, a new genus rank synonymy in Macratriinae is proposed: Thambospasta Werner, 1974 syn. nov. of Salimuzzamania Abdullah, 1968. New combination is made for Salimuzzamania howdeni (Werner, 1974) comb. nov. (from Thambospasta).
    • First mitogenome of subfamily Langiinae (Lepidoptera: Sphingidae) with its phylogenetic implications

      Wang, Xu; Zhang, Hao; Kitching, I; Xu, Zhen-Bang; Huang, Yi-Xin (Elsevier BV, 2021-04-18)
      To date, a relatively complete classification of Sphingidae (Lepidoptera) has been generated, but the phylogeny of the family remains need to be fully resolved. Some phylogenetic relationships within Sphingidae still remains uncertain, especially the taxonomic status of the subfamily Langiinae and its sole included genus and species, Langia zenzeroides. To begin to address this problem, we generated nine new complete mitochondrial genomes, including that of Langia, and together with that of Theretra oldenlandiae from our previous study and 25 other Sphingidae mitogenomes downloaded from GenBank, analyzed the phylogenetic relationships of Sphingidae and investigated the mitogenomic differences among members of the Langiinae, Sphinginae, Smerinthinae and Macroglossinae. The mitogenomes of Sphingidae varied from 14995 bp to 15669 bp in length. The gene order of all newly sequenced mitogenomes was identical, containing 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and the A + T-rich region. Nucleotide composition was A + T biased, and all the protein-coding genes exhibited a positive AT-skew, which was reflected in the nucleotide composition, codon, and amino acid usage. The A + T-rich region was comprised of nonrepetitive sequences, which contained regulatory elements related to the control of replication and transcription. We analyzed concatenated gene sequences, with third codon positions of protein coding genes and rRNAs excluded, using Maximum Likelihood and Bayesian Inference techniques. All four currently recognized subfamilies were recovered as monophyletic but in contrast to the most recent studies, our preferred tree placed Langiinae as the first subfamily to diverge within Sphingidae rather as sister to Smerinthinae + Sphinginae. Our results also support the removal of the genus Barbourion from the smerinthine tribe Ambulycini to an unresolved position in "Smerinthinae incertae sedis".