• Assessing plastic size distribution and quantity on a remote island in the South Pacific

      Nichols, Emma C; Lavers, Jennifer L; Archer-Rand, Simeon; Bond, AL (Elsevier BV, 2021-04-16)
      Plastics are an environmental threat; however, their fate once in the pelagic environment is poorly known. We compare results from assessments of floating plastics in the South Pacific Ocean with accumulated beach plastics from Henderson Island. We also compare accumulated plastic mass on Henderson during 2015 and 2019 and investigate the presence of nanoplastics. There were differences between the size classes of beach and pelagic plastics, and an increase in microplastics (0.33-5 mm) on the beach between 2015 and 2019. Micro- and nanoplastics were found at all sites (mean ± SE: 1960 ± 356 pieces/kg dw). Across the whole beach this translates to >4 billion plastic particles in the upper 5 cm. This is concerning, particularly given Henderson is uninhabited and distant from urban centres (~2350 km from Pape'ete, French Polynesia). The vast number of small particles on Henderson may make nearshore filter feeders susceptible to ingestion and subsequent detrimental impacts.
    • Detection of ultrafine plastics ingested by seabirds using tissue digestion.

      Lavers, JL; Stivaktakis, G; Hutton, I; Bond, AL (Elsevier, 2019-04-06)
      Plastic debris is a major global threat to marine ecosystems and species. However, our knowledge of this issue may be incomplete due to a lack of a standardized method for quantifying ingested ultrafine particles (1 μm - 1 mm) in wildlife. This study provides the first quantification of ultrafine plastic in seabirds using chemical and biological digestion treatments to extract plastic items from seabird gizzards. The alkaline agent, potassium hydroxide, outperformed the enzyme corolase, based on cost and efficiency (e.g., digestion time). Ultrafine plastics were observed in 7.0% of Flesh-footed Shearwater (Ardenna carneipes) gizzards collected from Lord Howe Island, Australia and accounted for 3.6% of all plastic items recovered (13 out of 359 items). Existing methods for extracting ingested plastic from seabirds do not account for ultrafine particles, therefore our results indicate current seabird plastic loads, and the associated physical and biological impacts, are underestimated.
    • Ingested plastic and trace element concentrations in Short-tailed Shearwaters (Ardenna tenuirostris)

      Puskic, PS; Lavers, JL; Adams, LR; Bond, AL (Elsevier, 2020-06-01)
      Pollution of marine environments is concerning for complex trophic systems. Two anthropogenic stresses associated with marine pollution are the introduction of marine plastic and their associated chemicals (e.g., trace elements) which, when ingested, may cause harm to wildlife. Here we explore the relationship between plastic ingestion and trace element burden in the breast muscle of Short-tailed Shearwaters (Ardenna tenuirostris). We found no relationship between the amount of plastic ingested and trace element concentration in the birds' tissues. Though the mass and number of plastic items ingested by birds during 1969–2017 did not change significantly, trace element concentrations of some elements (Cu, Zn, As, Rb, Sr and Cd), appeared to have increased in birds sampled in 2017 compared to limited data from prior studies. We encourage policy which considers the data gleaned from this sentinel species to monitor the anthropogenic alteration of the marine environment.
    • Measuring nest incorporation of anthropogenic debris by seabirds: An opportunistic approach increases geographic scope and reduces costs

      O'Hanlon, Nina J; Bond, AL; Masden, Elizabeth A; Lavers, Jennifer L; James, Neil A (Elsevier BV, 2021-07-14)
      Data on the prevalence of anthropogenic debris in seabird nests can be collected alongside other research or through community science initiatives to increase the temporal and spatial scale of data collection. To assess the usefulness of this approach, we collated data on nest incorporation of debris for 14 seabird species from 84 colonies across five countries in northwest Europe. Of 10,274 nests monitored 12% contained debris, however, there was large variation in the proportion of nests containing debris among species and colonies. For several species, the prevalence of debris in nests was significantly related to the mean Human Footprint Index (HFI), a proxy for human impact on the environment, within 100 km of the colony. Collecting opportunistic data on nest incorporation of debris by seabirds provides a cost-effective method of detecting changes in the prevalence of debris in the marine environment across a large geographic scale.
    • Plastics in regurgitated Flesh-footed Shearwater (Ardenna carneipes) boluses as a monitoring tool

      Bond, AL; Hutton, Ian; Lavers, Jennifer L (Elsevier BV, 2021-04-30)
      Plastic production and pollution of the environment with plastic items is rising rapidly and outpacing current mitigation measures. Success of mitigation actions can only be determined if progress can be measured reliably through incorporation of specific, measurable targets. Here we evaluate temporal changes in the amount and composition of plastic in boluses from Flesh-footed Shearwaters during 2002-2020 and assess their suitability for measuring progress against national and international commitments to reduce plastic pollution. Plastic in the shearwater boluses showed a generally decreasing pattern from 2002 to 2015 and increasing again to 2020. The colour and type of plastics in boluses was comparable to items recovered from live and necropsied birds, but a much smaller sample size (~35 boluses/year) was required to detect changes in plastic number and mass over time. We therefore suggest shearwater boluses are a low-effort, high-statistical power monitoring tool for quantifying progress against environmental policies in Australia.
    • Seasonal ingestion of anthropogenic debris in an urban population of gulls

      Stewart, LG; Lavers, JL; Grant, ML; Puskic, PS; Bond, AL (Elsevier BV, 2020-08-15)
      Gulls are generalist seabirds, increasingly drawn to urban environments where many species take advantage of abundant food sources, such as landfill sites. Despite this, data on items ingested at these locations, including human refuse, is limited. Here we investigate ingestion of prey and anthropogenic debris items in boluses (regurgitated pellets) from Pacific Gulls (Larus pacificus). A total of 374 boluses were collected between 2018 and 2020 in Tasmania. Debris was present in 92.51% of boluses (n = 346), with plastic (86.63%, n = 324) and glass (64.71%, n = 242) being the most prominent types. An abundance of intact, household items (e.g., dental floss, food wrappers) suggest the gulls regularly feed at landfill sites. In addition, the boluses are deposited at a roosting site located within an important wetland, thus we propose that the gulls may be functioning as a previously unrecognised vector of anthropogenic debris from urban centres to aquatic environments.
    • Trace element concentrations in feathers from three seabird species breeding in the Timor Sea

      Lavers, JL; Humphreys-Williams, Emma; Crameri, NJ; Bond, AL (Elsevier BV, 2020-01-29)
      Mobile marine predators, such as seabirds, are frequently used as broad samplers of contaminants that are widespread in the marine environment. The Timor Sea off remote Western Australia is a poorly studied, yet rapidly expanding area of offshore development. To provide much needed data on contamination in this region, we quantified trace element concentrations in breast feathers of three seabird species breeding on Bedout Island. While adult Masked Boobies Sula dactylatra exhibited some of the highest concentrations, values for all species were below toxicology thresholds for seabirds and were comparable to those reported in other closely related species. The low concentrations detected in the birds provide a valuable baseline and suggest that the local marine environment around Bedout is in relatively good condition. However, careful monitoring is warranted in light increasing anthropogenic activity in this region.
    • The use of anthropogenic marine debris as a nesting material by brown boobies (Sula leucogaster)

      Grant, ML; Lavers, JL; Stuckenbrock, S; Sharp, PB; Bond, AL (Elsevier, 2018-10-11)
      Marine debris is pervasive worldwide, and affects biota negatively. We compared the characteristics of debris incorporated within brown booby (Sula leucogaster) nests throughout their pantropical distribution by assessing the type, colour and mass of debris items within nests and in beach transects at 18 sites, to determine if nests are indicators of the amount of debris in local marine environments. Debris was present in 14.4% of nests surveyed, with the proportion of nests with debris varying among sites (range: 0–100%). There was minimal overlap between the type or colour of debris found in nests and on adjacent beaches at individual sites. This suggests that brown boobies do not select debris uniformly across their distribution. We propose that the nests of brown boobies can be used as a sentinel of marine debris pollution of their local environment.