• Access to Marine Genetic Resources (MGR): Raising Awareness of Best-Practice Through a New Agreement for Biodiversity Beyond National Jurisdiction (BBNJ)

      Rabone, M; Harden-Davies, H; Collins, JE; Zajderman, S; Appeltans, W; Droege, G; Brandt, A; Pardo-Lopez, L; Dahlgren, TG; Glover, AG; et al. (Frontiers Media SA, 2019-09-03)
      Better scientific knowledge of the poorly-known deep sea and areas beyond national jurisdiction (ABNJ) is key to its conservation, an urgent need in light of increasing environmental pressures. Access to marine genetic resources (MGR) for the biodiversity research community is essential to allow these environments to be better characterised. Negotiations have commenced under the auspices of the United Nations Convention on the Law of the Sea (UNCLOS) to develop a new treaty to further the conservation and sustainable use of marine biological diversity in ABNJ. It is timely to consider the relevant issues with the development of the treaty underway. Currently uncertainties surround the legal definition of MGR and scope of related benefit-sharing, against a background of regional and global governance gaps in ABNJ. These complications are mirrored in science, with recent major advances in the field of genomics, but variability in handling of the resulting increasing volumes of data. Here, we attempt to define the concept of MGR from a scientific perspective, review current practices for the generation of and access to MGR from ABNJ in the context of relevant regulations, and illustrate the utility of best-practice with a case study. We contribute recommendations with a view to strengthen best-practice in accessibility of MGR, including: funder recognition of the central importance of taxonomy/biodiversity research; support of museums/collections for long-term sample curation; open access to data; usage and further development of globally recognised data standards and platforms; publishing of datasets via open-access, quality controlled and standardised data systems and open access journals; commitment to best-practice workflows; a global registry of cruises; and lastly development of a clearing house to further centralised access to the above. We argue that commitment to best-practice would allow greater sharing of MGR for research and extensive secondary use including conservation and environmental monitoring, and provide an exemplar for access and benefit-sharing (ABS) to inform the biodiversity beyond national jurisdiction (BBNJ) process.
    • Deep-Sea Debris in the Central and Western Pacific Ocean

      Amon, Diva; Kennedy, BRC; Cantwell, K; Suhre, K; Glickson, D; Shank, TM; Rotjan, RD (Frontiers Media SA, 2020-05-27)
      Marine debris is a growing problem in the world’s deep ocean. The naturally slow biological and chemical processes operating at depth, coupled with the types of materials that are used commercially, suggest that debris is likely to persist in the deep ocean for long periods of time, ranging from hundreds to thousands of years. However, the realized scale of marine debris accumulation in the deep ocean is unknown due to the logistical, technological, and financial constraints related to deep-ocean exploration. Coordinated deep-water exploration from 2015 to 2017 enabled new insights into the status of deep-sea marine debris throughout the central and western Pacific Basin via ROV expeditions conducted onboard NOAA Ship Okeanos Explorer and RV Falkor. These expeditions included sites in United States protected areas and monuments, other Exclusive Economic Zones, international protected areas, and areas beyond national jurisdiction. Metal, glass, plastic, rubber, cloth, fishing gear, and other marine debris were encountered during 17.5% of the 188 dives from 150 to 6,000 m depth. Correlations were observed between deep-sea debris densities and depth, geological features, and distance from human-settled land. The highest densities occurred off American Samoa and the main Hawaiian Islands. Debris, mostly consisting of fishing gear and plastic, were also observed in most of the large-scale marine protected areas, adding to the growing body of evidence that even deep, remote areas of the ocean are not immune from human impacts. Interactions with and impacts on biological communities were noted, though further study is required to understand the full extent of these impacts. We also discuss potential sources and long-term implications of this debris.
    • Evidence of Vent-Adaptation in Sponges Living at the Periphery of Hydrothermal Vent Environments: Ecological and Evolutionary Implications

      Georgieva, MN; Taboada, Sergio; Riesgo, A; Díez-Vives, C; De Leo, FC; Jeffreys, RM; Copley, JT; Little, Crispin; Ríos, P; Cristobo, J; et al. (Frontiers Media SA, 2020-07-24)
      The peripheral areas of deep-sea hydrothermal vents are often inhabited by an assemblage of animals distinct to those living close to vent chimneys. For many such taxa, it is considered that peak abundances in the vent periphery relate to the availability of hard substrate as well as the increased concentrations of organic matter generated at vents, compared to background areas. However, the peripheries of vents are less well-studied than the assemblages of vent-endemic taxa, and the mechanisms through which peripheral fauna may benefit from vent environments are generally unknown. Understanding this is crucial for evaluating the sphere of influence of hydrothermal vents and managing the impacts of future human activity within these environments, as well as offering insights into the processes of metazoan adaptation to vents. In this study, we explored the evolutionary histories, microbiomes and nutritional sources of two distantly-related sponge types living at the periphery of active hydrothermal vents in two different geological settings (Cladorhiza from the E2 vent site on the East Scotia Ridge, Southern Ocean, and Spinularia from the Endeavour vent site on the Juan de Fuca Ridge, North-East Pacific) to examine their relationship to nearby venting. Our results uncovered a close sister relationship between the majority of our E2 Cladorhiza specimens and the species Cladorhiza methanophila, known to harbor and obtain nutrition from methanotrophic symbionts at cold seeps. Our microbiome analyses demonstrated that both E2 Cladorhiza and Endeavour Spinularia sp. are associated with putative chemosynthetic Gammaproteobacteria, including Thioglobaceae (present in both sponge types) and Methylomonaceae (present in Spinularia sp.). These bacteria are closely related to chemoautotrophic symbionts of bathymodiolin mussels. Both vent-peripheral sponges demonstrate carbon and nitrogen isotopic signatures consistent with contributions to nutrition from chemosynthesis. This study expands the number of known associations between metazoans and potentially chemosynthetic Gammaproteobacteria, indicating that they can be incredibly widespread and also occur away from the immediate vicinity of chemosynthetic environments in the vent-periphery, where these sponges may be adapted to benefit from dispersed vent fluids.
    • Extended Pelagic Life in a Bathybenthic Octopus

      Villanueva, Roger; Laptikhovsky, Vladimir V; Piertney, Stuart B; Fernández-Álvarez, Fernando Ángel; Collins, Martin A; Ablett, J; Escánez, Alejandro (Frontiers Media SA, 2020-11-20)
      Planktonic stages of benthic octopuses can reach relatively large sizes in some species, usually in oceanic, epipelagic waters while living as part of the macroplankton. These young octopuses appear to delay settlement on the seabed for an undetermined period of time that is probably longer than for those octopus paralarvae living in coastal, neritic waters. The reason for this delay is unknown and existing information about their biology is very scarce. Here we report on the presence of juvenile and subadult forms of the bathybenthic octopus Pteroctopus tetracirrhus in oceanic waters of the South and North Atlantic and its association with the pyrosomid species Pyrosoma atlanticum, apparently used by the octopus as a refuge or shelter. The relatively large size of the P. tetracirrhus living in oceanic waters as the individuals reported here, together with the morphological characteristics of this bathybenthic species including its gelatinous body, minute suckers embedded in swollen skin and the deep interbrachial web, indicates that P. tetracirrhus may be considered a model of a transitional octopus species that is colonizing the pelagic environment by avoiding descending to the bathyal benthos. This process seems to occur in the same way as in the supposed origin of the ctenoglossan holopelagic octopods of the families Amphitretidae, Bolitaenidae, and Vitreledonellidae, which have arisen via neoteny from the planktonic paralarval stages of benthic octopuses.
    • Successful Blue Economy Examples With an Emphasis on International Perspectives

      Wenhai, L; Cusack, C; Baker, M; Tao, W; Mingbao, C; Paige, K; Xiaofan, Z; Levin, L; Escobar, E; Amon, Diva; et al. (Frontiers Media SA, 2019-06-07)
      Careful definition and illustrative case studies are fundamental work in developing a Blue Economy. As blue research expands with the world increasingly understanding its importance, policy makers and research institutions worldwide concerned with ocean and coastal regions are demanding further and improved analysis of the Blue Economy. Particularly, in terms of the management connotation, data access, monitoring, and product development, countries are making decisions according to their own needs. As a consequence of this lack of consensus, further dialogue including this cases analysis of the blue economy is even more necessary. This paper consists of four chapters: (I) Understanding the concept of Blue Economy, (II) Defining Blue economy theoretical cases, (III) Introducing Blue economy application cases and (IV) Providing an outlook for the future. Chapters (II) and (III) summarizes all the case studies into nine aspects, each aiming to represent different aspects of the blue economy. This paper is a result of knowledge and experience collected from across the global ocean observing community, and is only made possible with encouragement, support and help of all members. Despite the blue economy being a relatively new concept, we have demonstrated our promising exploration in a number of areas. We put forward proposals for the development of the blue economy, including shouldering global responsibilities to protect marine ecological environment, strengthening international communication and sharing development achievements, and promoting the establishment of global blue partnerships. However, there is clearly much room for further development in terms of the scope and depth of our collective understanding and analysis.