• 262 Voyages Beneath the Sea: a global assessment of macro- and megafaunal biodiversity and research effort at deep-sea hydrothermal vents

      Thaler, AD; Amon, Diva (PeerJ, 2019-08-06)
      For over 40 years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here, we provide the first systematic assessment of macrofaunal and megafaunal biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of family-level incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.
    • The cranial morphology of Tanystropheus hydroides (Tanystropheidae, Archosauromorpha) as revealed by synchrotron microtomography

      Spiekman, Stephan NF; Neenan, James M; Fraser, Nicholas C; Fernandez, Vincent; Rieppel, Olivier; Nosotti, Stefania; Scheyer, Torsten M (PeerJ, 2020-11-20)
      The postcranial morphology of the extremely long-necked Tanystropheus hydroides is well-known, but observations of skull morphology were previously limited due to compression of the known specimens. Here we provide a detailed description of the skull of PIMUZ T 2790, including a partial endocast and endosseous labyrinth, based on synchrotron microtomographic data, and compare its morphology to that of other early Archosauromorpha. In many features, such as the wide and flattened snout and the configuration of the temporal and palatal regions, Tanystropheus hydroides differs strongly from other early archosauromorphs. The braincase possesses a combination of derived archosaur traits, such as the presence of a laterosphenoid and the ossification of the lateral wall of the braincase, but also differs from archosauriforms in the morphology of the ventral ramus of the opisthotic, the horizontal orientation of the parabasisphenoid, and the absence of a clearly defined crista prootica. Tanystropheus hydroides was a ram-feeder that likely caught its prey through a laterally directed snapping bite. Although the cranial morphology of other archosauromorph lineages is relatively well-represented, the skulls of most tanystropheid taxa remain poorly understood due to compressed and often fragmentary specimens. The recent descriptions of the skulls of Macrocnemus bassanii and now Tanystropheus hydroides reveal a large cranial disparity in the clade, reflecting wide ecological diversity, and highlighting the importance of non-archosauriform Archosauromorpha to both terrestrial and aquatic ecosystems during the Triassic.
    • Pushing the limits of whole genome amplification: successful sequencing of RADseq library from a single microhymenopteran (Chalcidoidea, Trichogramma)

      Cruaud, A; Groussier, G; Genson, G; Saune, L; Polaszek, A; Rasplus, J-Y (PeerJ, 2018-10-16)
      A major obstacle to high-throughput genotyping of microhymenoptera is their small size. As species are difficult to discriminate, and because complexes may exist, the sequencing of a pool of specimens is hazardous. Thus, one should be able to sequence pangenomic markers (e.g., RADtags) from a single specimen. To date, whole genome amplification (WGA) prior to library construction is still a necessity as at most 10 ng of DNA can be obtained from single specimens (sometimes less). However, this amount of DNA is not compatible with manufacturer’s requirements for commercial kits. Here we test the accuracy of the GenomiPhi kit V2 on Trichogramma wasps by comparing RAD libraries obtained from the WGA of single specimens (F0 and F1 generation, about1 ng input DNA for the WGA (0.17–2.9 ng)) and a biological amplification of genomic material (the pool of the progeny of the F1 generation). Globally, we found that 99% of the examined loci (up to 48,189 for one of the crosses, 109 bp each) were compatible with the mode of reproduction of the studied model (haplodiploidy) and Mendelian inheritance of alleles. The remaining 1% (0.01% of the analysed nucleotides) could represent WGA bias or other experimental/analytical bias. This study shows that the multiple displacement amplification method on which the GenomiPhi kit relies, could also be of great help for the high-throughput genotyping of microhymenoptera used for biological control, or other organisms from which only a very small amount of DNA can be extracted, such as human disease vectors (e.g., sandflies, fleas, ticks etc.).
    • The remedial conservation and support jacketing of the neotype specimen of the dinosaur Massospondylus carinatus

      Graham, M (PeerJ, 2017-08-09)
      The remedial conservation and support jacketing of the neotype specimen of the dinosaur Massospondylus carinatus
    • The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus , and the use of basal exemplifiers in phylogenetic analysis

      Raven, TJ; Maidment, SC (PeerJ, 2018-03-20)
      The first African dinosaur to be discovered, Paranthodon africanus was found in 1845 in the Lower Cretaceous of South Africa. Taxonomically assigned to numerous groups since discovery, in 1981 it was described as a stegosaur, a group of armoured ornithischian dinosaurs characterised by bizarre plates and spines extending from the neck to the tail. This assignment has been subsequently accepted. The type material consists of a premaxilla, maxilla, a nasal, and a vertebra, and contains no synapomorphies of Stegosauria. Several features of the maxilla and dentition are reminiscent of Ankylosauria, the sister-taxon to Stegosauria, and the premaxilla appears superficially similar to that of some ornithopods. The vertebral material has never been described, and since the last description of the specimen, there have been numerous discoveries of thyreophoran material potentially pertinent to establishing the taxonomic assignment of the specimen. An investigation of the taxonomic and systematic position of Paranthodon is therefore warranted. This study provides a detailed re-description, including the first description of the vertebra. Numerous phylogenetic analyses demonstrate that the systematic position of Paranthodon is highly labile and subject to change depending on which exemplifier for the clade Stegosauria is used. The results indicate that the use of a basal exemplifier may not result in the correct phylogenetic position of a taxon being recovered if the taxon displays character states more derived than those of the basal exemplifier, and we recommend the use, minimally, of one basal and one derived exemplifier per clade. Paranthodon is most robustly recovered as a stegosaur in our analyses, meaning it is one of the youngest and southernmost stegosaurs.
    • Using natural history collections to investigate changes in pangolin (Pholidota: Manidae) geographic ranges through time

      Buckingham, Emily; Curry, Jake; Emogor, Charles; Tomsett, Louise; Cooper, N (PeerJ, 2021-02-11)
      Pangolins, often considered the world’s most trafficked wild mammals, have continued to experience rapid declines across Asia and Africa. All eight species are classed as either Vulnerable, Endangered or Critically Endangered by the International Union for Conservation of Nature (IUCN) Red List. Alongside habitat loss, they are threatened mainly by poaching and/or legal hunting to meet the growing consumer demand for their meat and keratinous scales. Species threat assessments heavily rely on changes in species distributions which are usually expensive and difficult to monitor, especially for rare and cryptic species like pangolins. Furthermore, recent assessments of the threats to pangolins focus on characterising their trade using seizure data which provide limited insights into the true extent of global pangolin declines. As the consequences of habitat modifications and poaching/hunting on species continues to become apparent, it is crucial that we frequently update our understanding of how species distributions change through time to allow effective identification of geographic regions that are in need of urgent conservation actions. Here we show how georeferencing pangolin specimens from natural history collections can reveal how their distributions are changing over time, by comparing overlap between specimen localities and current area of habitat maps derived from IUCN range maps. We found significant correlations in percentage area overlap between species, continent, IUCN Red List status and collection year, but not ecology (terrestrial or arboreal/semi-arboreal). Human population density (widely considered to be an indication of trafficking pressure) and changes in primary forest cover, were weakly correlated with percentage overlap. Our results do not suggest a single mechanism for differences among historical distributions and present-day ranges, but rather show that multiple explanatory factors must be considered when researching pangolin population declines as variations among species influence range fluctuations. We also demonstrate how natural history collections can provide temporal information on distributions and discuss the limitations of collecting and using historical data.