• 3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host

      Martin-Vega, D; Garbout, A; Ahmed, F; Wicklein, M; Goater, CP; Colwell, DD; Hall, MJR (Springer Science and Business Media LLC, 2018-06-05)
      Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host’s behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
    • Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species

      Jabbar, A; Beveridge, I; Mohandas, N; Chilton, NB; Littlewood, T; Jex, AR; Gasser, RB (Springer Science and Business Media LLC, 2013-11-21)
      Background: Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results: The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions: The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species.
    • Ancient incomplete lineage sorting of Hyles and Rhodafra (Lepidoptera: Sphingidae)

      Hundsdoerfer, Anna K; Kitching, I (Springer Science and Business Media LLC, 2020-07-12)
      Abstract The hawkmoth genus Rhodafra comprises two African species with unclear relationships, as their wing patterns are markedly different, with one species closely resembling species of a related genus, Hyles. The present paper aims to investigate the monophyly and phylogenetic position of Rhodafra in relation to Hyles and other genera of the subtribe Choerocampina (Sphingidae: Macroglossinae: Macroglossini) using mitochondrial and nuclear sequence data from more species and individuals than have hitherto been studied. As no fresh tissue of Rhodafra was available, ancient-DNA methodology was applied. All data corroborate the genus as monophyletic and that a similar wing pattern is not a good indicator of close phylogenetic relationship in this group of moths. Phylogenetic trees based on mitochondrial data agree in placing Rhodafra within Hyles. In contrast, analysis of nuclear EF1alpha sequences produces a topology in which Rhodafra is placed as the sister clade to Hyles. Although multispecies coalescent analyses suggest a polytomy between Rhodafra, Hyles lineata and the remaining Hyles, total evidence analyses corroborate Rhodafra as sister to Hyles. This relationship is interpreted as the favoured topology. For a more robust result, the question should be re-examined using genomic approaches.
    • Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises (Cylindraspis spp.)

      Kehlmaier, C; Graciá, E; Campbell, P; Hofmeyr, MD; SCHWEIGER, S; Martínez-Silvestre, A; Joyce, W; Fritz, U (Springer Science and Business Media LLC, 2019-11-25)
      The five extinct giant tortoises of the genus Cylindraspis belong to the most iconic species of the enigmatic fauna of the Mascarene Islands that went largely extinct after the discovery of the islands. To resolve the phylogeny and biogeography of Cylindraspis, we analysed a data set of 45 mitogenomes that includes all lineages of extant tortoises and eight near-complete sequences of all Mascarene species extracted from historic and subfossil material. Cylindraspis is an ancient lineage that diverged as early as the late Eocene. Diversification of Cylindraspis commenced in the mid-Oligocene, long before the formation of the Mascarene Islands. This rejects any notion suggesting that the group either arrived from nearby or distant continents over the course of the last millions of years or had even been translocated to the islands by humans. Instead, Cylindraspis likely originated on now submerged islands of the Réunion Hotspot and utilized these to island hop to reach the Mascarenes. The final diversification took place both before and after the arrival on the Mascarenes. With Cylindraspis a deeply divergent clade of tortoises became extinct that evolved long before the dodo or the Rodrigues solitaire, two other charismatic species of the lost Mascarene fauna.
    • Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

      De Palma, A; Hoskins, Andrew; Gonzalez, Ricardo E; Börger, Luca; Newbold, Tim; Sanchez-Ortiz, Katia; Ferrier, Simon; Purvis, A (Springer Science and Business Media LLC, 2021-10-12)
      Few biodiversity indicators are available that reflect the state of broad-sense biodiversity—rather than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries’ rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region.
    • Assessing gaps in reporting non-target mortality in island rodent eradication operations

      Ward, S; Fournier, AMV; Bond, AL (Springer Science and Business Media LLC, 2019-06-25)
      Eradicating invasive species is a key part of island restoration, and can reverse the devastating impacts on native biota. Rodents are one of the most widespread invasive species, found on 80% of oceanic island systems, but have been removed from hundreds of islands through the application of anticoagulant-treated cereal bait. While such eradication operations are often net positive events for island ecosystems over the long-term, some native biota are also susceptible, resulting in short-term non-target mortality. One of the most widely distributed groups of birds, rails and allies (Rallidae) are highly adaptable, often endemic, and are known often to suffer mortality during rodent eradication operations, to varying degrees. Our goal was determine if the year of eradication or the size of the island predicted whether non-target mortalities were reported, including those that were true absences of mortality. We examined 122 eradication operations on 81 islands with rails present from 1983 to 2015, and found 78% with no reported information on non-target mortality using our search criteria. We found non-target mortality reporting has decreased over time, and there was no relationship with island size. Post-operational monitoring of eradication operations should thoroughly record non-target mortality to improve our understanding of factors affecting non-target mortality, and the efficacy of mitigation measures.
    • Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets

      Gasser, RB; Jabbar, A; Mohandas, N; Höglund, J; Hall, RS; Littlewood, T; Jex, AR (Springer Science and Business Media LLC, 2012-10-30)
      Background: Dictyocaulus species are strongylid nematodes of major veterinary significance in ruminants, such as cattle and cervids, and cause serious bronchitis or pneumonia (dictyocaulosis or “husk”). There has been ongoing controversy surrounding the validity of some Dictyocaulus species and their host specificity. Here, we sequenced and characterized the mitochondrial (mt) genomes of Dictyocaulus viviparus (from Bos taurus) with Dictyocaulus sp. cf. eckerti from red deer (Cervus elaphus), used mt datasets to assess the genetic relationship between these and related parasites, and predicted markers for future population genetic or molecular epidemiological studies. Methods: The mt genomes were amplified from single adult males of D. viviparus and Dictyocaulus sp. cf. eckerti (from red deer) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), also employing data for other strongylids for comparative purposes. Results: The circular mt genomes were 13,310 bp (D. viviparus) and 13,296 bp (Dictyocaulus sp. cf. eckerti) in size, and each contained 12 protein-encoding, 22 transfer RNA and 2 ribosomal RNA genes, consistent with other strongylid nematodes sequenced to date. Sliding window analysis identified genes with high or low levels of nucleotide diversity between the mt genomes. At the predicted mt proteomic level, there was an overall sequence difference of 34.5% between D. viviparus and Dictyocaulus sp. cf. eckerti, and amino acid sequence variation within each species was usually much lower than differences between species. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that both D. viviparus and Dictyocaulus sp. cf. eckerti were closely related, and grouped to the exclusion of selected members of the superfamilies Metastrongyloidea, Trichostrongyloidea, Ancylostomatoidea and Strongyloidea. Conclusions: Consistent with previous findings for nuclear ribosomal DNA sequence data, the present analyses indicate that Dictyocaulus sp. cf. eckerti (red deer) and D. viviparus are separate species. Barcodes in the two mt genomes and proteomes should serve as markers for future studies of the population genetics and/or epidemiology of these and related species of Dictyocaulus.
    • Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne - what does e-publication mean for you?

      Knapp, S; McNeill, J; Turland, NJ (Springer Science and Business Media LLC, 2011-09-14)
      Changes to the International Code of Botanical Nomenclature are decided on every 6 years at Nomenclature Sections associated with International Botanical Congresses (IBC). The XVIII IBC was held in Melbourne, Australia; the Nomenclature Section met on 18-22 July 2011 and its decisions were accepted by the Congress at its plenary session on 30 July. Several important changes were made to the Code as a result of this meeting that will affect publication of new names. Two of these changes will come into effect on 1 January 2012, some months before the Melbourne Code is published. Electronic material published online in Portable Document Format (PDF) with an International Standard Serial Number (ISSN) or an International Standard Book Number (ISBN) will constitute effective publication, and the requirement for a Latin description or diagnosis for names of new taxa will be changed to a requirement for a description or diagnosis in either Latin or English. In addition, effective from 1 January 2013, new names of organisms treated as fungi must, in order to be validly published, include in the protologue (everything associated with a name at its valid publication) the citation of an identifier issued by a recognized repository (such as MycoBank). Draft text of the new articles dealing with electronic publication is provided and best practice is outlined.
    • Chromoblastomycosis after a leech bite complicated by myiasis: a case report

      Slesak, G; Inthalad, S; Strobel, M; Marschal, M; Hall, MJR; Newton, PN (Springer Science and Business Media LLC, 2011-01-12)
      Background Chromoblastomycosis is a chronic mycotic infection, most common in the tropics and subtropics, following traumatic fungal implantation. Case presentation A 72 year-old farmer was admitted to Luang Namtha Provincial Hospital, northern Laos, with a growth on the left lower leg which began 1 week after a forefoot leech bite 10 years previously. He presented with a cauliflower-like mass and plaque-like lesions on his lower leg/foot and cellulitis with a purulent tender swelling of his left heel. Twenty-two Chrysomya bezziana larvae were extracted from his heel. PCR of a biopsy of a left lower leg nodule demonstrated Fonsecaea pedrosoi, monophora, or F. nubica. He was successfully treated with long term terbinafin plus itraconazole pulse-therapy and local debridement. Conclusions Chromoblastomycosis is reported for the first time from Laos. It carries the danger of bacterial and myiasis superinfection. Leech bites may facilitate infection.
    • Confocal laser scanning microscopy as a valuable tool in Diptera larval morphology studies

      Grzywacz, A; Góral, T; Szpila, K; Hall, MJR (Springer Science and Business Media LLC, 2014-09-19)
      Larval morphology of flies is traditionally studied using light microscopy, yet in the case of fine structures compound light microscopy is limited due to problems of resolution, illumination and depth of field, not allowing for precise recognition of sclerites’ edges and interactions. Using larval instars of cyclorrhaphan Diptera, we show the usefulness of confocal laser scanning microscopy (CLSM) for studying the morphological characters of immature stages by taking advantage of the autofluorescent properties of cephaloskeleton structures. We compare data obtained from killed but unprepared larvae with those from larvae prepared by clearing according to two commonly used methods, either with potassium hydroxide or with Hoyer’s medium. We also evaluated the CLSM application for examining already slide-mounted larvae stored in museum collections and those freshly prepared. Our results indicate that CLSM and 3D reconstruction are excellent for visualizing small, compound structures of cylrorrhaphan larvae cephaloskeleton, if appropriate clearing techniques, i.e. the application of KOH, are used. Maximum intensity projection of confocal data sets obtained from material freshly prepared and that stored in museum collection does not differ. Because of this and the fact that KOH is commonly used as a clearing method to examine the cephaloskeleton of Diptera larvae, it is possible, and highly recommended, to use slides already prepared with this method for re-examination by CLSM. We conclude that CLSM application can be an invaluable source of data for studies of larval morphology of Cyclorrhapha by way of taxonomic diagnoses, character identification and improvement in characters homologization.
    • Convergent evolution in toothed whale cochleae

      Park, Travis; Mennecart, B; Costeur, L; Grohé, C; Cooper, N (Springer Science and Business Media LLC, 2019-10-24)
      Background Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance. Results We identified three convergent regimes: (1) True’s (Mesoplodon mirus) and Cuvier’s (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall’s porpoise (Phocoenoides dalli). Interestingly the ‘river dolphins’, a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime. Conclusions The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.
    • Cranial morphology of the tanystropheid Macrocnemus bassanii unveiled using synchrotron microtomography

      Miedema, Feiko; Spiekman, Stephan NF; Fernandez, Vincent; Reumer, Jelle WF; Scheyer, Torsten M (Springer Science and Business Media LLC, 2020-07-24)
      The genus Macrocnemus is a member of the Tanystropheidae, a clade of non-archosauriform archosauromorphs well known for their very characteristic, elongated cervical vertebrae. Articulated specimens are known from the Middle Triassic of Alpine Europe and China. Although multiple articulated specimens are known, description of the cranial morphology has proven challenging due to the crushed preservation of the specimens. Here we use synchrotron micro computed tomography to analyse the cranial morphology of a specimen of the type species Macrocnemus bassanii from the Besano Formation of Monte San Giorgio, Ticino, Switzerland. The skull is virtually complete and we identify and describe the braincase and palatal elements as well the atlas-axis complex for the first time. Moreover, we add to the knowledge of the morphology of the skull roof, rostrum and hemimandible, and reconstruct the cranium of M. bassanii in 3D using the rendered models of the elements. The circumorbital bones were found to be similar in morphology to those of the archosauromorphs Prolacerta broomi and Protorosaurus speneri. In addition, we confirm the palatine, vomer and pterygoid to be tooth-bearing palatal bones, but also observed heterodonty on the pterygoid and the palatine.
    • Decomposed liver has a significantly adverse affect on the development rate of the blowfly Calliphora vicina

      Richards, CS; Rowlinson, CC; Cuttiford, Lue; Grimsley, R; Hall, MJR (Springer Science and Business Media LLC, 2012-04-26)
      The development rate of immature Calliphora vicina reared on decomposed liver was significantly slower, by as much as 30 h (55.4 % of total development time) for mid-sized larvae, and 71 h (35.0 %) and 58 h (14.6 %) if using times to the onset of pupariation and eclosion, respectively, than those of immatures that developed on fresh whole pig's liver. Development rates of larvae reared on decomposed liver were also slower than those of larvae reared on minced pig's liver and frozen/thawed pig's liver. These results suggest that any estimate of minimum post-mortem interval may result in an over estimate if the blowflies used were developing on an already decomposed body.
    • Detection of ascaridoid nematode parasites in the important marine food-fish Conger myriaster (Brevoort) (Anguilliformes: Congridae) from the Zhoushan Fishery, China

      Chen, H-X; Zhang, L-P; Gibson, David I.; Lü, L; Xu, Z; Li, H-T; Ju, H-D; Li, L (Springer Science and Business Media LLC, 2018-05-02)
      Background The whitespotted conger Conger myriaster (Brevoort) (Anguilliformes: Congridae) is an extremely marketable food fish, commonly consumed as sashimi or sushi in some Asian countries (i.e. Japan, Korea and China). Conger myriaster is also suspected as being an extremely important source of human anisakidosis. However, there is currently very little information on the levels of infection with ascaridoid nematode parasites in this economically important marine fish. The aims of the present study are to determine the species composition, prevalence and mean intensity of ascaridoid parasites of C. myriaster caught in the Zhoushan Fishery. Results A total of 1142 third-stage ascaridoid larvae were isolated from 204 C. myriaster. The overall prevalence of infection was 100% (mean intensity 5.6). Nine species of such larvae were accurately identified using integrative taxonomic techniques involving both morphological and genetic data; these included Anisakis pegreffii, A. typica and A. simplex (sensu stricto) × A. pegreffii, Hysterothylacium fabri, H. aduncum, H. sinense, H. amoyense, H. zhoushanense and Raphidascaris lophii. Although high levels of infection and species richness were revealed in C. myriaster, most of the ascaridoid parasites (1135 individuals) were collected from the body cavity and visceral organs of the fish and only seven individuals of A. pegreffii were found in the musculature. Conclusions This study represents the first report C. myriaster from the Zhoushan Fishery being heavily infected with third-stage ascaridoid larvae. Among the ascaridoid larvae parasitic in this fish, an important etiological agent of human anisakidosis, A. pegreffii (L3), represents the predominant species. The genus Hysterothylacium has the highest species richness, with H. fabri (L3) being the most prevalent species. This high level of infection of A. pegreffii (L3) in C. myriaster suggests a high risk of anisakidosis or associated allergies for people consuming raw or poorly cooked fish originating from this marine area. These findings provide important basic information on the occurrence and infection parameters of ascaridoid nematodes in this economically important marine fish. They also have significant implications for the prevention and control of human anisakidosis when conger eels from the Zhoushan Fishery are consumed.
    • Effects of storage temperature on the change in size of Calliphora vicina larvae during preservation in 80% ethanol

      Richards, CS; Rowlinson, CC; Hall, MJR (Springer Science and Business Media LLC, 2012-03-08)
      The size of immature blowflies is a common measure to estimate the minimum time between death and the discovery of a corpse, also known as the minimum post-mortem interval. This paper investigates the effects of preservation, in 80% ethanol, on the length and weight of first instar, second instar, feeding third instar, and post-feeding third instar Calliphora vicina larvae, at three different storage temperatures. For each larval stage, the length of larvae was recorded after 0 h, 3 h, 6 h, 9 h, 12 h, 24 h, 72 h, 7 days, 14 days, 30 days, 91 days, 182 days, 273 days, and 365 days of storage in 80% ethanol, at −25°C, 6°C and 24°C. Storage temperature had no statistically significant effect on the change in larval length and weight for all larval stages, but larval length and weight were significantly affected by the duration of preservation for first, second, and feeding third instar larvae, but not for post-feeding larvae. Generally, first and second instar larvae reduced in size over time, while feeding third instar larvae increased slightly in size, and post-feeding larvae did not change in size over time. The length of blowfly larvae preserved in 80% ethanol is not affected by constant storage temperatures between −25°C and +24°C, but we recommend that forensic entomologists should use the models provided to correct for changes in larval length that do become apparent over time.
    • Exites in Cambrian arthropods and homology of arthropod limb branches

      Liu, Yu; Edgecombe, GD; Schmidt, Michel; Bond, Andrew D; Melzer, Roland R; Zhai, Dayou; Mai, Huijuan; Zhang, Maoyin; Hou, Xianguang (Springer Science and Business Media LLC, 2021-04-01)
      Abstract: The last common ancestor of all living arthropods had biramous postantennal appendages, with an endopodite and exopodite branching off the limb base. Morphological evidence for homology of these rami between crustaceans and chelicerates has, however, been challenged by data from clonal composition and from knockout of leg patterning genes. Cambrian arthropod fossils have been cited as providing support for competing hypotheses about biramy but have shed little light on additional lateral outgrowths, known as exites. Here we draw on microtomographic imaging of the Cambrian great-appendage arthropod Leanchoilia to reveal a previously undetected exite at the base of most appendages, composed of overlapping lamellae. A morphologically similar, and we infer homologous, exite is documented in the same position in members of the trilobite-allied Artiopoda. This early Cambrian exite morphology supplements an emerging picture from gene expression that exites may have a deeper origin in arthropod phylogeny than has been appreciated.
    • The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae)

      Vanhove, Maarten PM; Briscoe, Andrew G; Jorissen, Michiel WP; Littlewood, T; Huyse, Tine (Springer Science and Business Media LLC, 2018-07-04)
      BACKGROUND:Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS:Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS:The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.
    • How metalliferous brines line Mexican epithermal veins with silver

      Wilkinson, JJ; Simmons, SF; Stoffell, B (Springer Science and Business Media LLC, 2013-06-24)
      We determined the composition of ~30-m.y.-old solutions extracted from fluid inclusions in one of the world's largest and richest silver ore deposits at Fresnillo, Mexico. Silver concentrations average 14 ppm and have a maximum of 27 ppm. The highest silver, lead and zinc concentrations correlate with salinity, consistent with transport by chloro-complexes and confirming the importance of brines in ore formation. The temporal distribution of these fluids within the veins suggests mineralization occurred episodically when they were injected into a fracture system dominated by low salinity, metal-poor fluids. Mass balance shows that a modest volume of brine, most likely of magmatic origin, is sufficient to supply the metal found in large Mexican silver deposits. The results suggest that ancient epithermal ore-forming events may involve fluid packets not captured in modern geothermal sampling and that giant ore deposits can form rapidly from small volumes of metal-rich fluid.
    • The increased sensitivity of qPCR in comparison to Kato-Katz is required for the accurate assessment of the prevalence of soil-transmitted helminth infection in settings that have received multiple rounds of mass drug administration

      Dunn, JC; PAPAIAKOVOU, MARINA; Han, KT; Chooneea, D; Bettis, AA; Wyine, NY; Lwin, AMM; Maung, NS; Misra, Raju; Littlewood, T; et al. (Springer Science and Business Media LLC, 2020-06-24)
      Background The most commonly used diagnostic tool for soil-transmitted helminths (STH) is the Kato-Katz (KK) thick smear technique. However, numerous studies have suggested that the sensitivity of KK can be problematic, especially in low prevalence and low intensity settings. An emerging alternative is quantitative polymerase chain reaction (qPCR). Methods In this study, both KK and qPCR were conducted on stool samples from 648 participants in an STH epidemiology study conducted in the delta region of Myanmar in June 2016. Results Prevalence of any STH was 20.68% by KK and 45.06% by qPCR. Prevalence of each individual STH was also higher by qPCR than KK, the biggest difference was for hookworm with an approximately 4-fold increase between the two diagnostic techniques. Prevalence of Ancylostoma ceylanicum, a parasite predominately found in dogs, was 4.63%, indicating that there is the possibility of zoonotic transmission in the study setting. In individuals with moderate to high intensity infections there is evidence for a linear relationship between eggs per gram (EPG) of faeces, derived from KK, and DNA copy number, derived from qPCR which is particularly strong for Ascaris lumbricoides. Conclusions The use of qPCR in low prevalence settings is important to accurately assess the epidemiological situation and plan control strategies for the ‘end game’. However, more work is required to accurately assess STH intensity from qPCR results and to reduce the cost of qPCR so that is widely accessible in STH endemic countries.
    • A juvenile Tristan albatross (Diomedea dabbenena) on land at the Crozet Islands

      Bond, AL; Taylor, Christopher; Kinchin-Smith, David; Fox, Derren; Witcutt, Emma; Ryan, Peter G; Loader, Simon P; Weimerskirch, Henri (Springer Science and Business Media LLC, 2020-12-19)
      Abstract: Albatrosses and other seabirds are generally highly philopatric, returning to natal colonies when they achieve breeding age. This is not universal, however, and cases of extraordinary vagrancy are rare. The Tristan Albatross (Diomedea dabbenena) breeds on Gough Island in the South Atlantic Ocean, with a small population on Inaccessible Island, Tristan da Cunha, ca 380 km away. In 2015, we observed an adult male albatross in Gonydale, Gough Island, which had been ringed on Ile de la Possession, Crozet Islands in 2009 when it was assumed to be an immature Wandering Albatross (D. exulans). We sequenced 1109 bp of the cytochrome b mitochondrial gene from this bird, and confirmed it to be a Tristan Albatross, meaning its presence on Crozet 6 years previous, and nearly 5000 km away, was a case of prospecting behaviour in a heterospecific colony. Given the challenges in identifying immature Diomedea albatrosses, such dispersal events may be more common than thought previously.