• Calathus: A sample-return mission to Ceres

      Gassot, Oriane; Panicucci, Paolo; Acciarini, Giacomo; Bates, HC; Caballero, Manel; Cambianica, Pamela; Dziewiecki, Maciej; Dionnet, Zelia; Enengl, Florine; Gerig, Selina-Barbara; et al. (Elsevier BV, 2021-01-12)
      Ceres, as revealed by NASA's Dawn spacecraft, is an ancient, crater-saturated body dominated by low-albedo clays. Yet, localised sites display a bright, carbonate mineralogy that may be as young as 2 Myr. The largest of these bright regions (faculae) are found in the 92 km Occator Crater, and would have formed by the eruption of alkaline brines from a subsurface reservoir of fluids. The internal structure and surface chemistry suggest that Ceres is an extant host for a number of the known prerequisites for terrestrial biota, and as such, represents an accessible insight into a potentially habitable “ocean world”. In this paper, the case and the means for a return mission to Ceres are outlined, presenting the Calathus mission to return to Earth a sample of the Occator Crater faculae for high-precision laboratory analyses. Calathus consists of an orbiter and a lander with an ascent module: the orbiter is equipped with a high-resolution camera, a thermal imager, and a radar; the lander contains a sampling arm, a camera, and an on-board gas chromatograph mass spectrometer; and the ascent module contains vessels for four cerean samples, collectively amounting to a maximum 40 g. Upon return to Earth, the samples would be characterised via high-precision analyses to understand the salt and organic composition of the Occator faculae, and from there to assess both the habitability and the evolution of a relict ocean world from the dawn of the Solar System.

      Pandeli, E; Santo, AP; Candido, MR; Giusti, R; Petrone, CM; petrone (Bologna, Pitàgora editrice, 2014-12-01)
      In this paper we studied in detail magmatic dykes filling fractures in the pillow lavas of the Ophiolitic Unit cropping out in the Monte Capo Stella Promontory (southern part of the Elba Island in the Northern Tyrrhenian Sea). The Elba Island is well known for its Tertiary complex tectonic stack of nappes, Late Miocene intrusion of acidic magmatic bodies and Fe-mineralizations. The phaneritic sub-volcanic rock (Monte Capo Stella dykes, MCSD) shows a porphyritic texture with variable pheno- and xenocrysts content. The main phenocrysts consist of plagioclase, quartz, K-feldspar and biotite. The MSCD, displaying calc-alkaline affinity, have a High-Potassium dacitic composition. Moderate fractionation and negative Eu anomaly characterize the chondrite normalised REE patterns. The mantle-normalised trace element patterns exhibit relatively high content of the most incompatible elements with negative spikes of Ba, Ta, Nb, Sr, P, and Ti. The measured 87Sr/86Sr and 143Nd/144Nd isotopic ratios are 0.708129 and 0.512209 respectively. In spite of the lack of radiometric data, the MCSD can be related to the acidic to intermediate magmatism that occurred in the interland of the Northern Apennines Chain during Late Miocene-Quaternary times. In particular, the MSCD belong to the intermediate rocks of the Tuscan Magmatic Province and display petrological and geochemical characteristics closely resembling those of a mafic enclave collected in the 6.8 Ma Orano Porphyry (Elba Island) and of some 9-4 Ma High Potassium Calc-Alkaline (HKCA) Capraia Island rocks. Thus, in the context of the Elba Island, the studied dykes represent the magmatic bodies showing the most peculiar HKCA features. The intrusion age of the MCSD can be put in the time interval between the intrusion of the Orano Porphyry in Western Elba (6.8 Ma) and that of the Monte Castello dyke (5.8 Ma) in Eastern Elba, and possibly before the Central Elba Fault (CEF) activity. This study also refines the deformation history of the Ophiolitic Unit in the Elba Island defining three final brittle deformation stages.
    • Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia

      Di Martino, E; Taylor, PD; Kudryavtsev, AB; William Schopf, J (2016-04)
    • Calculating the prevalence of soil-transmitted helminth infection through pooling of stool samples: Choosing and optimizing the pooling strategy

      Truscott, James; Dunn, Julia; PAPAIAKOVOU, MARINA; Schaer, Fabian; Werkman, Marleen; Littlewood, T; Walson, JL; Anderson, Roy (Public Library of Science (PLoS), 2019-03-21)
      Prevalence is a common epidemiological measure for assessing soil-transmitted helminth burden and forms the basis for much public-health decision-making. Standard diagnostic techniques are based on egg detection in stool samples through microscopy and these techniques are known to have poor sensitivity for individuals with low infection intensity, leading to poor sensitivity in low prevalence populations. PCR diagnostic techniques offer very high sensitivities even at low prevalence, but at a greater cost for each diagnostic test in terms of equipment needed and technician time and training. Pooling of samples can allow prevalence to be estimated while minimizing the number of tests performed. We develop a model of the relative cost of pooling to estimate prevalence, compared to the direct approach of testing all samples individually. Analysis shows how expected elative cost depends on both the underlying prevalence in the population and the size of the pools constructed. A critical prevalence level (approx. 31%) above which pooling is never cost effective, independent of pool size. When no prevalence information is available, there is no basis on which to choose between pooling and testing all samples individually. We recast our model of relative cost in a Bayesian framework in order to investigate how prior information about prevalence in a given population can be used to inform the decision to choose either pooling or full testing. Results suggest that if prevalence is below 10%, a relatively small exploratory prevalence survey (10–15 samples) can be sufficient to give a high degree of certainty that pooling may be relatively cost effective.
    • Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms

      Zamora, Samuel; Rahman, Imran; Sumrall, Colin D; Gibson, Adam P; Thompson, Jeffrey R (The Royal Society, 2022-03-09)
      Echinoderms are characterized by a distinctive high-magnesium calcite endoskeleton as adults, but elements of this have been drastically reduced in some groups. Herein, we describe a new pentaradial echinoderm, Yorkicystis haefneri n. gen. n. sp., which provides, to our knowledge, the oldest evidence of secondary non-mineralization of the echinoderm skeleton. This material was collected from the Cambrian Kinzers Formation in York (Pennsylvania, USA) and is dated as ca 510 Ma. Detailed morphological observations demonstrate that the ambulacra (i.e. axial region) are composed of flooring and cover plates, but the rest of the body (i.e. extraxial region) is preserved as a dark film and lacks any evidence of skeletal plating. Moreover, X-ray fluorescence analysis reveals that the axial region is elevated in iron. Based on our morphological and chemical data and on taphonomic comparisons with other fossils from the Kinzers Formation, we infer that the axial region was originally calcified, while the extraxial region was non-mineralized. Phylogenetic analyses recover Yorkicystis as an edrioasteroid, indicating that this partial absence of skeleton resulted from a secondary reduction. We hypothesize that skeletal reduction resulted from lack of expression of the skeletogenic gene regulatory network in the extraxial body wall during development. Secondary reduction of the skeleton in Yorkicystis might have allowed for greater flexibility of the body wall.
    • The Caribbean needs big marine protected areas

      Gallagher, AJ; Amon, Diva; Bervoets, T; Shipley, ON; Hammerschlag, N; Sims, DW (American Association for the Advancement of Science (AAAS), 2020-02-14)
    • A Case of Urogenital Human Schistosomiasis from a Non-endemic Area

      Calvo-Cano, A; Cnops, L; Huyse, T; van Lieshout, L; Pardos, J; Valls, ME; Franco, A; Rollinson, D; Gascon, J; Jones, MK (2015-11-05)
    • Catalogue and composition of fossil Anthicidae and Ischaliidae (Insecta: Coleoptera)

      Telnov, Dmitry; Bukejs, A (Paleontological Society., 2019-04)
      Despite the increasing rate of systematic research on extant tenebrionoid Coleoptera of the Anthicidae and Ischaliidae, their fossil records remained largely unrevised. In the current paper we review all hitherto named ant-like flower beetles and false fire-coloured beetles fossils. We suggest 16 fossil species can be reliably assigned to the Anthicidae and three species to the Ischaliidae. We proposed new placements for two fossil Anthicidae taxa: Petratypus nigri Kaddumi, 2005 moved from Anthicidae to Cucujiformia Familia incertae sedis and “Eurygenius” wickhami Cockerell, 1917 is re-described and moved from Eurygeniinae Anthicidae to Tenebrionoidea Familia and Genus incertae sedis. Additionally, three new species are described from Eocene Baltic amber, namely Nitorus succinius sp. nov., Steropes eleticinoides sp. nov. and Tomoderus saecularis sp. nov. An annotated catalogue of fossil Anthicidae and Ischaliidae is provided. We made a qualitative analysis of available data, evaluated the distribution of fossils in the light of current biogeography and geological time. The oldest hitherto known fossil record of the Anthicidae is 130.0-125.5 Ma (same for Macratriinae), of the Anthicinae - 37.2-33.9 Ma, of the Eurygeniinae - 55.8-48.6 Ma, of the Notoxinae, Steropinae and Tomoderinae - 37.2-33.9 Ma. The oldest hitherto know fossil record of the Ischaliidae is 37.2-33.9 Ma.
    • A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies

      Cooper, N; Thomas, GH; Venditti, C; Meade, A; Freckleton, RP (2016-05)
    • Centipede venoms as a source of drug leads

      Undheim, EAB; Jenner, RA; King, GF (2016-12)
    • Cerromojonite, CuPbBiSe3, from El Dragon (Bolivia): A New Member of the Bournonite Group

      Foerster, H-J; Bindi, L; Grundmann, G; Stanley, Christopher (2018-09-21)
    • Cervelleite, Ag4TeS: solution and description of the crystal structure

      Bindi, L; Spry, PG; Stanley, Christopher (2015-08)
    • Changes in technology and imperfect detection of nest contents impedes reliable estimates of population trends in burrowing seabirds

      Lavers, JL; Hutton, I; Bond, A (Elsevier, 2019-03-01)
      One of the most fundamental aspects of conservation biology is understanding trends in the abundance of species and populations. This influences conservation interventions, threat abatement, and management by implicitly or explicitly setting targets for favourable conservation states, such as an increasing or stable population. Burrow-nesting seabirds present many challenges for determining abundance reliably, which is further hampered by variability in the quality of previous surveys. We used burrow scopes to determine the population status of Flesh-footed Shearwaters (Ardenna carneipes) at their largest colony on Lord Howe Island, Australia, in 2018. We estimated a breeding population of 22,654 breeding pairs (95% CI: 8159–37,909). Comparing burrow scope models used in 2018 found more than half of burrow contents (20/36 burrows examined) were classified differently. If this detection probability is applied retroactively to surveys in 2002 and 2009, we estimate that the Flesh-footed Shearwater population on Lord Howe has decreased by up to 50% in the last decade, but uncertainty around previous surveys’ ability to reliably determine burrow contents means a direct comparison is not possible. The decline in burrow density between 2018 and previous years adds further evidence that the population may not be stable. Our results highlight a need for regular surveys to quantify detection probability so that as video technology advances, previous population estimates remain comparable. We urge caution when comparing population counts of burrowing seabirds using different technologies, to ensure comparisons are meaningful.
    • Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne - what does e-publication mean for you?

      Knapp, S; McNeill, J; Turland, NJ (Springer Science and Business Media LLC, 2011-09-14)
      Changes to the International Code of Botanical Nomenclature are decided on every 6 years at Nomenclature Sections associated with International Botanical Congresses (IBC). The XVIII IBC was held in Melbourne, Australia; the Nomenclature Section met on 18-22 July 2011 and its decisions were accepted by the Congress at its plenary session on 30 July. Several important changes were made to the Code as a result of this meeting that will affect publication of new names. Two of these changes will come into effect on 1 January 2012, some months before the Melbourne Code is published. Electronic material published online in Portable Document Format (PDF) with an International Standard Serial Number (ISSN) or an International Standard Book Number (ISBN) will constitute effective publication, and the requirement for a Latin description or diagnosis for names of new taxa will be changed to a requirement for a description or diagnosis in either Latin or English. In addition, effective from 1 January 2013, new names of organisms treated as fungi must, in order to be validly published, include in the protologue (everything associated with a name at its valid publication) the citation of an identifier issued by a recognized repository (such as MycoBank). Draft text of the new articles dealing with electronic publication is provided and best practice is outlined.
    • Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

      Hodoroaba, V-D; Rades, S; Salge, T; Mielke, J; Ortel, E; Schmidt, R (2016-02-09)