• New insights from old eggs – the shape and thickness of Great Auk Pinguinus impennis eggs

      Birkhead, T; Russell, D; Garbout, A; Attard, M; Thompson, J; Jackson, D (Wiley, 2020-02-09)
      We compared the shape and eggshell thickness of Great Auk Pinguinus impennis eggs with those of its closest relatives, the Razorbill Alca torda, Common Guillemot Uria aalge and Brünnich's Guillemot Uria lomvia, in order to gain additional insights into the breeding biology of the extinct Great Auk. The egg of the Great Auk was most similar in shape to that of Brünnich's Guillemot. The absolute thickness of the Great Auk eggshell was greater than that of the Common Guillemot and Razorbill egg, which is as expected given its greater size, but the relative shell thickness at the equator and pointed end (compared with the blunt end) was more similar to that of the Common Guillemot. On the basis of these and other results we suggest that Great Auk incubated in an upright posture in open habitat with little or no nest, where its pyriform egg shape provided stability and allowed safe manoeuvrability during incubation. On the basis of a recent phylogeny of the Alcidae, we speculate that a single brood patch, a pyriform egg and upright incubation posture, as in the Great Auk and the two Uria guillemots, is the ancestral state, and that the Razorbill – the Great Auk's closest relative – secondarily evolved two brood patches and an elliptical egg as adaptations for horizontal incubation, which provides flexibility in incubation site selection, allowing breeding in enclosed spaces such as crevices, burrows or under boulders, as well as on open ledges.
    • Shells from the shoreline - a new perspective on changing Lake Tanganyika

      Todd, JA; Michel, E; Titxcomb, M (ZenodoBologna, 2020-02-03)
      Using past records to provide context and guidance in a changing world. Overwhelming evidence shows that ecological, evolutionary and earth system processes have been profoundly altered by humans, and will continue to be altered for millennia to come. But, what was life like before human impacts and what processes brought us into the Anthropocene epoch? The rapidly growing field of Conservation Paleobiology uses fossil and historical records to provide valuable context and guidance to conservation of life on Earth. This symposium was organised by Aaron O'Dea, Daniele Scarponi, Laura Airoldi & Paolo Albano. It brought over 80 students and researchers together to provide an informal venue for lively talks and a chance to meet old and new colleagues.
    • The genome sequence of the Eurasian red squirrel, Sciurus vulgaris Linnaeus 1758

      Mead, D; Fingland, K; Cripps, R; PORTELA MIGUEZ, ROBERTO; Smith, M; Corton, C; Oliver, K; Skelton, J; Betteridge, E; Dolucan, J; et al. (F1000 Research Ltd, 2020-02-03)
      We present a genome assembly from an individual male Sciurus vulgaris (the Eurasian red squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.88 gigabases in span. The majority of the assembly is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.
    • Quantifying the Effect of Anthropogenic Climate Change on Calcifying Plankton

      Fox, L; Stukins, S; Hill, Thomas; Giles Miller, C (Springer Science and Business Media LLC, 2020-01-31)
      Widely regarded as an imminent threat to our oceans, ocean acidification has been documented in all oceanic basins. Projected changes in seawater chemistry will have catastrophic biotic effects due to ocean acidification hindering biogenic carbonate production, which will in turn lead to substantial changes in marine ecosystems. However, previous attempts to quantify the effect of acidification on planktonic calcifying organisms has relied on laboratory based studies with substantial methodological limitations. This has been overcome by comparing historic plankton tows from the seminal HMS Challenger Expedition (1872–1876) with the recent Tara Oceans expedition material (2009–2016). Nano CT-scans of selected equatorial Pacific Ocean planktonic foraminifera, have revealed that all modern specimens had up to 76% thinner shells than their historic counterparts. The “Challenger Revisited” project highlights the potential of historic ocean collections as a tool to investigate ocean acidification since the early Industrial Revolution. Further analyses of such biotic archives will enable researchers to quantify the effects of anthropogenic climate change across the globe.
    • DeWorm 3: Charting a path towards STH elimination.

      DWorm3 (Natural History Museum, 2020-01-30)
    • Trace element concentrations in feathers from three seabird species breeding in the Timor Sea

      Lavers, JL; Humphreys-Williams, Emma; Crameri, NJ; Bond, AL (Elsevier BV, 2020-01-29)
      Mobile marine predators, such as seabirds, are frequently used as broad samplers of contaminants that are widespread in the marine environment. The Timor Sea off remote Western Australia is a poorly studied, yet rapidly expanding area of offshore development. To provide much needed data on contamination in this region, we quantified trace element concentrations in breast feathers of three seabird species breeding on Bedout Island. While adult Masked Boobies Sula dactylatra exhibited some of the highest concentrations, values for all species were below toxicology thresholds for seabirds and were comparable to those reported in other closely related species. The low concentrations detected in the birds provide a valuable baseline and suggest that the local marine environment around Bedout is in relatively good condition. However, careful monitoring is warranted in light increasing anthropogenic activity in this region.
    • SYNTHESYS+ Virtual Access - Report on the Ideas Call (October to November 2019)

      Hardy, Helen; Knapp, S; Allan, Louise; Berger, F; Dixey, K; Döme, B; Gagnier, P-Y; Frank, J; Haston, E; Holstein, J; et al. (Pensoft Publishers, 2020-01-24)
      The SYNTHESYS consortium has been operational since 2004, and has facilitated physical access by individual researchers to European natural history collections through its Transnational Access programme (TA). For the first time, SYNTHESYS+ will be offering virtual access to collections through digitisation, with two calls for the programme, the first in 2020 and the second in 2021. The Virtual Access (VA) programme is not a direct digital parallel of Transnational Access - proposals for collections digitisation will be prioritised and carried out based on community demand, and data must be made openly available immediately. A key feature of Virtual Access is that, unlike TA, it does not select the researchers to whom access is provided. Because Virtual Access in this way is new to the community and to the collections-holding institutions, the SYNTHESYS+ consortium invited ideas through an Ideas Call, that opened on 7th October 2019 and closed on 22nd November 2019, in order to assess interest and to trial procedures. This report is intended to provide feedback to those who participated in the Ideas Call and to help all applicants to the first SYNTHESYS+Virtual Access Call that will be launched on 20<jats:sup>th</jats:sup> of February 2020.
    • Multi-stage arc magma evolution recorded by apatite in volcanic rocks

      Nathwani, Chetan; Loader, MA; Wilkinson, JJ; Buret, Y; Sievwright, RH; Hollings, P (Geological Society of America, 2020-01-17)
      Protracted magma storage in the deep crust is a key stage in the formation of evolved, hydrous arc magmas that can result in explosive volcanism and the formation of economically valuable magmatic-hydrothermal ore deposits. High magmatic water content in the deep crust results in extensive amphibole ± garnet fractionation and the suppression of plagioclase crystallization as recorded by elevated Sr/Y ratios and high Eu (high Eu/Eu*) in the melt. Here, we use a novel approach to track the petrogenesis of arc magmas using apatite trace element chemistry in volcanic formations from the Cenozoic arc of central Chile. These rocks formed in a magmatic cycle that culminated in high-Sr/Y magmatism and porphyry ore deposit formation in the Miocene. We use Sr/Y, Eu/Eu*, and Mg in apatite to track discrete stages of arc magma evolution. We apply fractional crystallization modeling to show that early-crystallizing apatite can inherit a high-Sr/Y and high-Eu/Eu* melt chemistry signature that is predetermined by amphibole-dominated fractional crystallization in the lower crust. Our modeling shows that crystallization of the in situ host-rock mineral assemblage in the shallow crust causes competition for trace elements in the melt that leads to apatite compositions diverging from bulk-magma chemistry. Understanding this decoupling behavior is important for the use of apatite as an indicator of metallogenic fertility in arcs and for interpretation of provenance in detrital studies.
    • A new species of Bicurta Sheng et al. from China (Hymenoptera, Ichneumonidae, Collyriinae), a parasitoid of Stenocephus fraxini Wei (Hymenoptera, Cephidae)

      Liu, J-X; Yan, J-H; Broad, G (Pensoft Publishers, 2019-12-30)
      A new species of the genus Bicurta Sheng, Broad & Sun, 2012, is described and illustrated, B. hejunhuai sp. nov., from North and Northeast China. The new species was reared from the stem-sawfly Stenocephus fraxini Wei (Hymenoptera, Cephidae), which is the first host record for the genus Bicurta.
    • Mechanisms for the generation of HREE mineralization in carbonatites: Evidence from Huanglongpu, China.

      Smith, M; Cangelosi, D; Yardley, B; Wenlei Song, CX; Spratt, J (The Society for Geology Applied to Mineral Deposits, 2019-12-30)
      The Hunaglongpu carbonatites, Qinling Mountains, China, are exceptional as they form both an economic Mo resource, and are enriched in the HREE compared to typical carbonatites, giving a metal profile that may closely match projected future demand. The carbonatites at the level currently exposed appear to be transitional between magmatic and hydrothermal processes. The multistage dykes and veins are cored by quartz which hosts a fluid inclusion assemblage with a high proportion of sulphate daughter or trapped minerals, and later stage, cross-cutting veins are rich in barite-celestine. The REE mineral paragenesis evolves from monazite, through apatite and bastnäsite to Ca-REE fluorcabonates, with an increase in HREE enrichment at every stage. Radio-isotope ratios are typical of enriched mantle sources and sulphur stable isotopes are consistent with magmatic S sources. However, Mg stable isotopes are consistent with a component of recycled subducted marine carbonate in the source region, The HREE enrichment is a function of both unusual mantle source for the primary magmas and REE mobility and concentration during post-magmatic modification in a sulphate-rich hydrothermal system. Aqueous sulphate is a none specific ligand for the REE, and this coupled with crystal fraction lead to HREE enrichment during subsolidus alteration.
    • Species‐level image classification with convolutional neural network enables insect identification from habitus images

      Hansen, OLP; Svenning, J; Olsen, K; Dupont, Steen; garner, beulah; Iosifidis, A; Price, BW; Høye, TT (Wiley, 2019-12-24)
      1. Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground-dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test whether a convolutional neural network (CNN) can classify habitus images of ground beetles to species level, and estimate how correct classification relates to body size, number of species inside genera, and species identity. 2. We created an image database of 65,841 museum specimens comprising 361 carabid beetle species from the British Isles and fine-tuned the parameters of a pretrained CNN from a training dataset. By summing up class confidence values within genus, tribe, and subfamily and setting a confidence threshold, we trade-off between classification accuracy, precision, and recall and taxonomic resolution. 3. The CNN classified 51.9% of 19,164 test images correctly to species level and 74.9% to genus level. Average classification recall on species level was 50.7%. Applying a threshold of 0.5 increased the average classification recall to 74.6% at the expense of taxonomic resolution. Higher top value from the output layer and larger sized species were more often classified correctly, as were images of species in genera with few species. 4. Fine-tuning enabled us to classify images with a high mean recall for the whole test dataset to species or higher taxonomic levels, however, with high variability. This indicates that some species are more difficult to identify because of properties such as their body size or the number of related species. 5. Together, species-level image classification of arthropods from museum collections and ecological monitoring can substantially increase the amount of occurrence data that can feasibly be collected. These tools thus provide new opportunities in understanding and predicting ecological responses to environmental change.
    • Various Gallus varius hybrids: variation in junglefowl hybrids and Darwin's interest in them

      van Grouw, Hein; Dekkers, W (British Ornithologists' Club, 2019-12-16)
      Hybrids between Green Junglefowl Gallus varius and domestic fowl G. gallus domesticus confused several 19th-century ornithologists. The plumage of these hybrids is so unlike the colours and patterns of either of the parent species that they were considered to be distinct species: G. aeneusTemminck, 1825; G. temminckiiGray, 1849; and G. violaceusKelsall, 1891. Darwin wanted to understand if G. aeneus and G. temminckii were hybrids or species, as part of his research on the origin of the domestic chicken. His view was that all domesticated fowl have a single wild ancestor, Red Junglefowl G. gallus (formerly G. bankiva). A hybrid specimen now present in the bird collection of the Natural History Museum at Tring played an important role in Darwin's reasoning and, although the conclusions he drew from this specimen were incorrect, his single-ancestor origin theory for domesticated fowl stands. ‘These hybrids were at one time thought to be specifically distinct, and were named G. aeneus. Mr. Blyth and others believe that the G. Temminckii is a similar hybrid' (Darwin 1868a: 234–235).
    • The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda)

      Golikov, A; Ceia, F; Sabirov, R; Ablett, J; Gleadall, I; Gudmundsson, G; Hoving, H; Heather, J; Pálsson, J; Reid, AL; et al. (Nature Publishing Group, 2019-12-13)
      Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.
    • Quantified Aeolian Dune Changes on Mars Derived From Repeat Context Camera Images

      Davis, Joel; M. Grindrod, P; Boazman, Sarah; Vermeesch, P; Baird, T (American Geophysical Union (AGU), 2019-12-11)
      Aeolian systems are active across much of the surface of Mars and quantifying the activity of bedforms is important for understanding the modern and recent Martian environment. Recently, the migration rates and sand fluxes of dunes and ripples have been precisely measured using repeat High Resolution Imaging Science Experiment (HiRISE) images. However, the limited areal extent of HiRISE coverage means that only a small area can be targeted for repeat coverage. Context Camera (CTX) images, although lower in spatial resolution, have wider spatial coverage, meaning that dune migration can potentially be monitored over larger areas. We used time series, coregistered CTX images and digital elevation models to measure dune migration rates and sand fluxes at six sites: Nili Patera, Meroe Patera, two sites at Herschel crater, McLaughlin crater, and Hellespontus Montes. We observed dune displacement in the CTX images over long‐term baselines (7.5–11 Earth years; 4–6 Mars years). Bedform activity has previously been measured at all these sites using HiRISE, which we used to validate our results. Our dune migration rates (0.2–1.1 m/EY) and sand fluxes (2.4–11.6 m3 m−1 EY−1) compare well to measurements made with HiRISE. The use of CTX in monitoring dune migration has advantages (wider spatial coverage, faster processing time) and disadvantages (ripples not resolved, digital elevation model dune heights may be underestimates); the future combined use of HiRISE and CTX is likely to be beneficial.
    • Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications

      Zhai, D; Edgecombe, GD; Bond, AD; Mai, H; Hou, X; Liu, Y (The Royal Society, 2019-12-04)
      Trilobitomorphs are a species-rich Palaeozoic arthropod assemblage that unites trilobites with several other lineages that share similar appendage structure. Post-embryonic development of the exoskeleton is well documented for some trilobitomorphs, especially trilobites, but little is known of the ontogeny of their soft parts, limiting understanding of their autecology. Here, we document appendage structure of the Cambrian naraoiid trilobitomorph Naraoia spinosa by computed microtomography, resulting in three-dimensional reconstructions of appendages at both juvenile and adult stages. The adult has dense, strong spines on the protopods of post-antennal appendages, implying a predatory/scavenging behaviour. The absence of such gnathobasic structures, but instead tiny protopodal bristles and a number of endopodal setae, suggests a detritus-feeding strategy for the juvenile. Our data add strong morphological evidence for ecological niche shifting by Cambrian arthropods during their life cycles. A conserved number of appendages across the sampled developmental stages demonstrates that Naraoia ceased budding off new appendages by the mid-juvenile stage.
    • Understanding the microscale spatial distribution and mineralogical residency of Re in pyrite: Examples from carbonate-hosted Zn-Pb ores and implications for pyrite Re-Os geochronology

      Hnatyshin, D; Creaser, RA; Meffre, S; Stern, RA; Wilkinson, JJ; Turner, EC (Elsevier BV, 2019-11-26)
      Accurate and precise geochronology using the Re-Os isotopic system in pyrite is an invaluable tool for developing and confirming genetic models of ore systems. However, as a bulk method, the results produced by pyrite Re-Os geochronology are commonly complex, and many imprecise isochrons exist in the literature. Using LA-ICPMS methods it is now possible to map and quantify Re distribution at the ppb level, allowing an unprecedented look into the Re-Os systematics of pyrite-bearing ore. Two samples from the Lisheen Zn-Pb ore deposit in Ireland showing disparate Re-Os isotopic behavior were investigated. In-situ sulfur isotope measurements using SIMS, an analytical technique not previously attempted on the Irish deposits, was used to supplement the Re-Os dataset. A massive pyrite sample from the Main Zone produced a precise, low-scatter isochron (346.6 ± 3.0 Ma, MSWD = 1.6). The Re distribution in this sample is relatively homogeneous, with the Re budget dominated by pyrite containing 1–5 ppb Re, but the δ34S varies significantly from −45.2‰ to 8.2‰. A second, more paragenetically complex, sample from the Derryville Zone produced a younger age with high scatter (322 ± 11 Ma, MSWD = 206) and this also displays a large variation in δ34S (−53‰ to +4‰). The cores of grains of main-stage iron sulfide are depleted in trace elements and show low Re abundances (<10 ppb) but have been altered in an irregular fashion leading to Re-enriched domains that exceed 100 ppb. Additionally, micron-scale molybdenite crystals, found in close association with altered sulfides, contain Re at levels that locally exceed 10 ppm. The highly scattered (MSWD = 206) and younger age (322 Ma), produced by the Derryville Zone sample are interpreted to result from mixing of different generations of sulfide, potentially involving fluids associated with Variscan deformation (<310 Ma). Therefore, the Re-Os data produced from the Derryville Zone sample does not reflect the timing of iron sulfide mineralization, even though a relatively precise age was obtained. A second Re-Os dataset from Zn-Pb mineralization at Hawker Creek, Nunavut, Canada was produced from massive pyrite that displays low Re concentrations (<1 ppb). However, on grain boundaries and in fractures, silicate-rich material contains Re at levels that can locally exceed 500 ppb. Analyses of fracture-free pyrite produced by bulk separation using magnetic separation yielded the oldest model age (1083 Ma), whereas mineral separates containing the highest fracture density produced the youngest age (413 Ma). In general, therefore, the complexities of pyrite Re-Os geochronology can result from impurities in mineral separates. Attempts to eliminate impurities through different mineral separation techniques (e.g. crushing, heavy liquid separation, magnetic separation, acid leaching) are frequently only partially successful and therefore full characterization of any resulting mineral separates is extremely important. We conclude that LA-ICPMS mapping of Re and Mo distributions is essential for the identification of such impurities. Although other trace element LA-ICPMS maps, in-situ sulfur isotope measurements, and petrographic evidence were of limited use in assessing the Re budget of a sample, they are invaluable in linking the documented Re distribution obtained through LA-ICPMS to Re-Os geochronological results.
    • Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises (Cylindraspis spp.)

      Kehlmaier, C; Graciá, E; Campbell, P; Hofmeyr, MD; SCHWEIGER, S; Martínez-Silvestre, A; Joyce, W; Fritz, U (Springer Science and Business Media LLC, 2019-11-25)
      The five extinct giant tortoises of the genus Cylindraspis belong to the most iconic species of the enigmatic fauna of the Mascarene Islands that went largely extinct after the discovery of the islands. To resolve the phylogeny and biogeography of Cylindraspis, we analysed a data set of 45 mitogenomes that includes all lineages of extant tortoises and eight near-complete sequences of all Mascarene species extracted from historic and subfossil material. Cylindraspis is an ancient lineage that diverged as early as the late Eocene. Diversification of Cylindraspis commenced in the mid-Oligocene, long before the formation of the Mascarene Islands. This rejects any notion suggesting that the group either arrived from nearby or distant continents over the course of the last millions of years or had even been translocated to the islands by humans. Instead, Cylindraspis likely originated on now submerged islands of the Réunion Hotspot and utilized these to island hop to reach the Mascarenes. The final diversification took place both before and after the arrival on the Mascarenes. With Cylindraspis a deeply divergent clade of tortoises became extinct that evolved long before the dodo or the Rodrigues solitaire, two other charismatic species of the lost Mascarene fauna.
    • Cranial anatomy and taxonomy of the erythrosuchid archosauriform ‘Vjushkovia triplicostata’ Huene, 1960, from the Early Triassic of European Russia

      Butler, RJ; Sennikov, AG; Dunne, EM; Ezcurra, MD; Hedrick, BP; Maidment, Susannah; Meade, LE; Raven, TJ; Gower, DJ (The Royal Society, 2019-11-20)
      Erythrosuchidae are a globally distributed and important group of apex predators that occupied Early and Middle Triassic terrestrial ecosystems following the Permo-Triassic mass extinction. The stratigraphically oldest known genus of Erythrosuchidae is Garjainia Ochev, 1958, which is known from the late Early Triassic (late Olenekian) of European Russia and South Africa. Two species of Garjainia have been reported from Russia: the type species, Garjainia prima Ochev, 1958, and ‘Vjushkovia triplicostata’ von Huene, 1960, which has been referred to Garjainia as either congeneric (Garjainiatriplicostata) or conspecific (G. prima). The holotype of G. prima has received relatively extensive study, but little work has been conducted on type or referred material attributed to ‘V. triplicostata’. However, this material includes well-preserved fossils representing all parts of the skeleton and comprises seven individuals. Here, we provide a comprehensive description and review of the cranial anatomy of material attributed to ‘V. triplicostata’, and draw comparisons with G. prima. We conclude that the two Russian taxa are indeed conspecific, and that minor differences between them result from a combination of preservation or intraspecific variation. Our reassessment therefore provides additional information on the cranial anatomy of G. prima. Moreover, we quantify relative head size in erythrosuchids and other early archosauromorphs in an explicit phylogenetic context for the first time. Our results show that erythrosuchids do indeed appear to have disproportionately large skulls, but that this is also true for other early archosauriforms (i.e. proterosuchids), and may reflect the invasion of hypercarnivorous niches by these groups following the Permo-Triassic extinction.
    • Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return

      Bates, HC; King, AJ; Donaldson Hanna, KL; Bowles, NE; Russell, Sara (Wiley, 2019-11-19)
      The highly hydrated, petrologic type 1 CM and CI carbonaceous chondrites likely derived from primitive, water‐rich asteroids, two of which are the targets for JAXA's Hayabusa2 and NASA's OSIRIS‐REx missions. We have collected visible and near‐infrared (VNIR) and mid infrared (MIR) reflectance spectra from well‐characterized CM1/2, CM1, and CI1 chondrites and identified trends related to their mineralogy and degree of secondary processing. The spectral slope between 0.65 and 1.05 μm decreases with increasing total phyllosilicate abundance and increasing magnetite abundance, both of which are associated with more extensive aqueous alteration. Furthermore, features at ~3 μm shift from centers near 2.80 μm in the intermediately altered CM1/2 chondrites to near 2.73 μm in the highly altered CM1 chondrites. The Christiansen features (CF) and the transparency features shift to shorter wavelengths as the phyllosilicate composition of the meteorites becomes more Mg‐rich, which occurs as aqueous alteration proceeds. Spectra also show a feature near 6 μm, which is related to the presence of phyllosilicates, but is not a reliable parameter for estimating the degree of aqueous alteration. The observed trends can be used to estimate the surface mineralogy and the degree of aqueous alteration in remote observations of asteroids. For example, (1) Ceres has a sharp feature near 2.72 μm, which is similar in both position and shape to the same feature in the spectra of the highly altered CM1 MIL 05137, suggesting abundant Mg‐rich phyllosilicates on the surface. Notably, both OSIRIS‐REx and Hayabusa2 have onboard instruments which cover the VNIR and MIR wavelength ranges, so the results presented here will help in corroborating initial results from Bennu and Ryugu.
    • Entrapment in plastic debris endangers hermit crabs

      Lavers, JL; Sharp, PB; Stuckenbrock, S; Bond, AL (Elsevier BV, 2019-11-16)
      Significant quantities of plastic debris pollute nearly all the world’s ecosystems, where it persists for decades and poses a considerable threat to flora and fauna. Much of the focus has been on the marine environment, with little information on the hazard posed by debris accumulating on beaches and adjacent vegetated areas. Here we investigate the potential for beach debris to disrupt terrestrial species and ecosystems on two remote islands. The significant quantities of debris on the beaches, and throughout the coastal vegetation, create a significant barrier which strawberry hermit crabs (Coenobita perlatus) encounter during their daily activities. Around 61,000 (2.447 crabs/m2) and 508,000 crabs (1.117 crabs/m2) are estimated to become entrapped in debris and die each year on Henderson Island and the Cocos (Keeling) Islands, respectively. Globally, there is an urgent need to establish a clear link between debris interactions and population persistence, as loss of biodiversity contributes to ecosystem degradation. Our findings show accumulating debris on these islands has the potential to seriously impact hermit crab populations. This is important for countless other islands worldwide where crabs and debris overlap, as crabs play a crucial role in the maintenance of tropical ecosystems.