• The genus Orionis Shaw (Hymenoptera, Braconidae, Euphorinae) in the Old World

      Broad, G; Stigenberg, Julia (Pensoft Publishers, 2021-12-30)
      The euphorine braconid genus Orionis Shaw, 1987 is found to be more diverse in the Old World than had previously been recognised. Orionis was regarded previously as largely Neotropical, with one Oriental species (Orionis orientalis Shimbori & Shaw, 2016) known from Thailand, but we recognise an additional three species from the Oriental and Palaearctic regions. Three species of Euphorinae are transferred to Orionis Shaw, 1987 and are new combinations: Orionis coxator (Belokobylskij, 1995), comb. nov., Orionis erratus (Chen & van Achterberg, 1997), comb. nov., and Orionis flavifacies (Belokobylskij, 2000), comb. nov. Previously known from the Far Eastern Palaearctic, O. coxator has surprisingly been found in Europe, in Belgium, England and the Netherlands. The inclusion of these species in Orionis whereas most previous species have been described from the Neotropics, is justified by Bayesian analysis of the D2 region of 28S, Cytochrome Oxidase I barcode sequences, and morphology.
    • Correlative tomography of an exceptionally preserved Jurassic ammonite implies hyponome-propelled swimming

      Cherns, Lesley; Spencer, Alan RT; Rahman, Imran; Garwood, Russell J; Reedman, Christopher; Burca, Genoveva; Turner, Martin J; Hollingworth, Neville TJ; Hilton, Jason (Geological Society of America, 2021-12-07)
      The extreme rarity of soft-tissue preservation in ammonoids has meant there are open questions regarding fundamental aspects of their biology. We report an exceptionally preserved Middle Jurassic ammonite with unrivaled information on soft-body organization interpreted through correlative neutron and X-ray tomography. Three-dimensional imaging of muscles and organs of the body mass for the first time in this iconic fossil group provides key insights into functional morphology. We show that paired dorsal muscles withdrew the body into the shell, rather than acting with the funnel controlling propulsion as in Nautilus. This suggests a mobile, retractable body as a defense strategy and necessitates a distinct swimming mechanism of hyponome propulsion, a trait that we infer evolved early in the ammonoid-coleoid lineage.
    • Pre‐ and postzygotic mechanisms preventing hybridization in co‐occurring species of the Impatiens purpureoviolacea complex

      Abrahamczyk, Stefan; Jandová, Michaela; Líblová, Zuzana; Janssens, Steven B; Dostálek, Tomáš; Holstein, Norbert; Fischer, Eberhard (Wiley, 2021-11-24)
      In the species-rich genus Impatiens, few natural hybrids are known, even though closely related species often occur sympatrically. In this study, we aim to bridge the gap between micro- and macro-evolution to disentangle pre- and postzygotic mechanisms that may prevent hybridization in the Impatiens purpureoviolacea complex from Central Africa. We analyzed habitat types, species distribution, pollination syndromes, pollinator dependency, genome sizes, and chromosome numbers of seven out of the ten species of the complex as well as of one natural hybrid and reconstructed the ancestral chromosome numbers of the complex. Several species of the complex occur in sympatry or geographically very close to each other. All of them are characterized by pre- and/or postzygotic mechanisms potentially preventing hybridization. We found four independent polyploidization events within the complex. The only known natural hybrid always appears as single individual and is self-fertile. But the plants resulting from self-pollinated seeds often die shortly after first flowering. These results indicate that the investigated mechanisms in combination may effectively but not absolutely prevent hybridization in Impatiens and probably occur in other genera with sympatric species as well.
    • Hidden Phylogenomic Signal Helps Elucidate Arsenurine Silkmoth Phylogeny and the Evolution of Body Size and Wing Shape Trade-Offs

      Hamilton, Chris A; Winiger, Nathalie; Rubin, Juliette J; Breinholt, Jesse; ROUGERIE, Rodolphe; Kitching, I; Barber, Jesse R; Kawahara, Akito Y (Oxford University Press (OUP), 2021-11-13)
      One of the key objectives in biological research is understanding how evolutionary processes have produced Earth’s diversity. A critical step toward revealing these processes is an investigation of evolutionary tradeoffs—that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference—a region of a tree that possesses short branches and no “support” for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing (HW) shape. Namely, body size tends to decrease with increasing HW length but increases as forewing (FW) shape becomes more complex. Additionally, the type of HW (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of FW shape. We outline possible selective forces driving the complex HW shapes that make Arsenurinae, and silkmoths as a whole, so charismatic. [Anchored hybrid enrichment; Arsenurinae; geometric morphometrics; Lepidoptera; phylogenomics; Saturniidae.]
    • The first fossil Coleoptera record from the Volyn Region, Ukraine, with description of a new Glesoconomorphus (Coleoptera, Mycteridae) in syninclusion with Winterschmidtiidae (Acari) and a key to species

      Telnov, Dmitry; Perkovsky, Evgeny E; Vasilenko, Dmitry V; Yamamoto, Shûhei (Pensoft Publishers, 2021-11-08)
      Glesoconomorphus ekaterinae sp. nov. (Coleoptera, Mycteridae), representing the first ever fossil species of Coleoptera from the Volyn Region of Ukraine and the first mycterid from late Eocene Rovno amber, is described and illustrated. A key to species of the fossil mycterid genus Glesoconomorphus Alekseev, Pollock & Bukejs, 2019 is presented. The systematic position of Glesoconomorphus within Eurypinae J. Thomson, 1860 is briefly discussed. The oldest finding of phoretic Winterschmidtiidae Oudemans, 1923 mites, found on the type specimen of the new beetle species, is reported.
    • Prediction of shoreline–shelf depositional process regime guided by palaeotidal modelling

      Collins, Daniel S; Avdis, Alexandros; Wells, Martin R; Dean, Christopher; Mitchell, Andrew J; Allison, Peter A; Johnson, Howard D; Hampson, Gary J; Hill, Jon; Piggott, Matthew D (Elsevier BV, 2021-10-29)
      Ancient shoreline–shelf depositional systems are influenced by an unusually wide array of geological, biological and hydrodynamic processes, with sediment transport and deposition primarily determined by the interaction of river, wave (including storm) and tidal processes, and changes in relative sea level. Understanding the impact of these processes on shoreline–shelf morphodynamics and stratigraphic preservation remains challenging. Numerical modelling integrated with traditional facies analysis provides an increasingly viable approach, with the potential to quantify, and thereby improve understanding of, the impact of these complex coastal sedimentary processes. An integrated approach is presented here that focuses on palaeotidal modelling to investigate the controls on ancient tides and their influence on sedimentary deposition and preservation – one of the three cornerstones of the ternary process classification scheme of shoreline-shelf systems. Numerical tidal modelling methodology is reviewed and illustrated in three palaeotidal model case studies of different scales and focus. The results are synthesised in the context of shoreline–shelf processes, including a critique and modification of the process-based classification scheme. The emphasis on tidal processes reflects their global importance throughout Earth’s history. Ancient palaeotidal models are able to highlight and quantify the following four controls on tidal processes: (1) the physiography (shape and depth) of oceans (1000s km scale) determines the degree of tidal resonance; (2) the physiography of ocean connections to partly enclosed water bodies (100–1000s km scale) determines the regional-scale flux of tidal energy (inflow versus outflow); (3) the physiography of continental shelves influences shelf tidal resonance potential; and (4) tides in relatively local-scale embayments (typically 1–10s km scale) are influenced by the balance of tidal amplification due to funnelling, shoaling and resonance effects versus frictional damping. In deep time, palaeogeographic and palaeobathymetric uncertainty can be accounted for in palaeotidal models by performing sensitivity analyses to different scenarios, across this range of spatial scales. These tidal process controls are incorporated into an updated predictive decision tree for determining shoreline–shelf process regime in terms of the relative interaction of wave, fluvial and tidal processes. The predictive decision tree considers the effects of basin physiography, shelf width and shoreline morphology on wave, fluvial and tidal processes separately. Uncertainty and ambiguity in applying the widely used three-tier process classification scheme are reduced by using the decision tree in conjunction with a proposed two-tier classification of process regime that is limited to primary and secondary processes. This two-tier classification scheme is illustrated in the three case studies, showing how integration of numerical modelling with facies analysis of the preserved stratigraphic record improves confidence in prediction of tide-influenced shoreline-shelf process regimes. Wider application of this approach will further improve process-based classifications and predictions of modern and ancient shoreline–shelf systems.
    • The detection of Schistosoma bovis in livestock on Pemba Island, Zanzibar: A preliminary study

      Pennance, T; Ame, Shaali M; Amour, Amour Khamis; Suleiman, Khamis Rashid; Cable, Jo; Webster, BL (Elsevier BV, 2021-10-15)
      Schistosoma bovis is a parasitic trematode of ungulates transmitted by freshwater snails in Sub-Saharan Africa causing bovine intestinal schistosomiasis that leads to chronic morbidity and significant agricultural economic losses. The recently reported occurrence of Bulinus globosus infected with S. bovis for the first time on Pemba Island (Zanzibar, United Republic of Tanzania) is a cause of concern for livestock/wildlife health and complicates the surveillance of Schistosoma haematobium. To confirm that local cattle are infected with S. bovis, fresh faecal samples were collected from six adult cows surrounding two schistosomiasis transmission sites in Kinyasini, Pemba Island. Schistosome eggs were concentrated, egg hatching stimulated and miracidia were individually captured and identified by analysis of the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) and the partial nuclear internal transcribed spacer region (ITS1+5.8S+ITS2). Two S. bovis miracidia were collected from one faecal sample with two cox1 haplotypes, one matching cox1 data obtained from S. bovis cercariae, collected previously at the same site in Pemba, the other matching S. bovis cox1 data originating from coastal Tanzania. The findings conclude that S. bovis transmission has been established on Pemba Island and is likely to have been imported through livestock trade with East Africa. Increasing the sensitivity of non-invasive diagnostics for bovine schistosomiasis, together with wider sampling, will enable a better assessment on the epidemiology of S. bovis on Pemba Island.
    • Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

      De Palma, A; Hoskins, Andrew; Gonzalez, Ricardo E; Börger, Luca; Newbold, Tim; Sanchez-Ortiz, Katia; Ferrier, Simon; Purvis, A (Springer Science and Business Media LLC, 2021-10-12)
      Few biodiversity indicators are available that reflect the state of broad-sense biodiversity—rather than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries’ rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region.
    • A Minimally Morphologically Destructive Approach for DNA Retrieval and Whole-Genome Shotgun Sequencing of Pinned Historic Dipteran Vector Species

      Korlević, Petra; McAlister, Erica; Mayho, Matthew; Makunin, Alex; Flicek, Paul; Lawniczak, Mara KN (Oxford University Press (OUP), 2021-10-01)
      Abstract: Museum collections contain enormous quantities of insect specimens collected over the past century, covering a period of increased and varied insecticide usage. These historic collections are therefore incredibly valuable as genomic snapshots of organisms before, during, and after exposure to novel selective pressures. However, these samples come with their own challenges compared with present-day collections, as they are fragile and retrievable DNA is low yield and fragmented. In this article, we tested several DNA extraction procedures across pinned historic Diptera specimens from four disease vector genera: Anopheles, Aedes, Culex, and Glossina. We identify an approach that minimizes morphological damage while maximizing DNA retrieval for Illumina library preparation and sequencing that can accommodate the fragmented and low yield nature of historic DNA. We identify several key points in retrieving sufficient DNA while keeping morphological damage to a minimum: an initial rehydration step, a short incubation without agitation in a modified low salt Proteinase K buffer (referred to as “lysis buffer C” throughout), and critical point drying of samples post-extraction to prevent tissue collapse caused by air drying. The suggested method presented here provides a solid foundation for exploring the genomes and morphology of historic Diptera collections.
    • What's in a name? Nomenclature for colour aberrations in birds reviewed

      van Grouw, Hein (British Ornithologists' Club, 2021-09-10)
      A review is presented of the seven commonest types of colour aberrations in birds together with suggestions for a standardised universal nomenclature to identify and distinguish these aberrations. These aberrations are: Leucism (congenital absence of melanin-producing cells), Progressive Greying (progressive loss of melanin-producing cells), Albino (total absence of melanin due to lack of the key enzyme), Brown (incompletely coloured melanin), Ino (even less completely coloured melanin), Dilution (altered deposition of melanin) and Melanism (altered distribution of melanin). It is proposed that these terms should be based not only on the resulting plumage but also should distinguish the underlying processes resulting in the aberrant pigmentation. By reviewing previously used terms for colour aberrations, and cross-referencing these with my proposed terminology, errors in earlier names are pointed out, and resulting in a more comprehensive nomenclature for colour aberrations found in wild birds.
    • The locomotion of extinct secondarily aquatic tetrapods

      Gutarra, Susana; Rahman, Imran (Wiley, 2021-09-06)
      The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
    • Evolution of Impatiens (Balsaminaceae) in the Albertine Rift – The endemic Impatiens purpureoviolacea complex consists of ten species

      Fischer, Eberhard; Abrahamczyk, Stefan; Holstein, Norbert; Janssens, Steven B (Wiley, 2021-09-06)
      The Albertine Rift harbours a highly diverse flora with numerous endemic species. An important component of the forestunderstorey is the herbaceous genusImpatiens. Fieldwork in Burundi, the Democratic Republic of the Congo and Rwanda as well asmorphological studies indicated that the Albertine Rift endemicImpatiens purpureoviolacearepresents a species complex. We ana-lyzed the hidden diversity of the complex using morphological and molecular data supplemented by herbarium studies. We found thattheImpatiens purpureoviolaceacomplex can be divided into morphologically and phylogenetically well characterized clades contain-ing ten species and a natural hybrid. We describe all of these species, provide a species key and analyze their evolutionary history.BesideImpatiens purpureoviolaceaandI. gesneroidea, the already describedI. urundiensisis resurrected from synonymy. Two va-rieties,Impatiens purpureoviolaceavar.longicalcarataandI. gesneroideavar.superglabraare raised to species status, and five newspecies (Impatiens elwiraurzulae,I. lotteri,I. ludewigii,I. lutzmannii,I. versicolor) and a new natural hybrid (I. ×troupinii) are de-scribed. Within the mostly insect-pollinated species of the clade, two bird-pollinated species (Impatiens gesneroidea,I. super-glabra) evolved independently. The clade split from its sister taxon in the Pliocene and started diversifying during the Pliocene/Pleistocene transition in parallel to an increased mountain uplifting and volcanic activity in the Albertine Rift. It further diversifiedduring the Pleistocene, likely due to the changes in forest cover and connectivity induced by climatic fluctuations.
    • A Pseudoscorpion's Promising Pinch: The venom of Chelifer cancroides contains a rich source of novel compounds

      Krämer, Jonas; Peigneur, Steve; Tytgat, Jan; Jenner, Ronald; van Toor, Ronald; Predel, Reinhard (Elsevier BV, 2021-08-18)
      With pedipalps modified for venom injection, some pseudoscorpions possess a unique venom delivery system, which evolved independently from those of other arachnids like scorpions and spiders. Up to now, only a few studies have been focused on pseudoscorpion venom, which either identified a small fraction of venom compounds, or were based on solely transcriptomic approaches. Only one study addressed the bioactivity of pseudoscorpion venom. Here, we expand existing knowledge about pseudoscorpion venom by providing a comprehensive proteomic and transcriptomic analysis of the venom of Chelifer cancroides. We identified the first putative genuine toxins in the venom of C. cancroides and we showed that a large fraction of the venom comprises novel compounds. In addition, we tested the activity of the venom at specific ion channels for the first time. These tests demonstrate that the venom of C. cancroides causes inhibition of a voltage-gated insect potassium channel (Shaker IR) and modulates the inactivation process of voltage-gated sodium channels from Varroa destructor. For one of the smallest venomous animals ever studied, today's toolkits enabled a comprehensive venom analysis. This is demonstrated by allocating our identified venom compounds to more than half of the prominent ion signals in MALDI-TOF mass spectra of venom samples. The present study is a starting point for understanding the complex composition and activity of pseudoscorpion venom and provides a potential rich source of bioactive compounds useable for basic research and industrial application.
    • Petrological and geochemical characterisation of the sarsen stones at Stonehenge

      Nash, David J; Ciborowski, T Jake R; Darvill, Timothy; Parker Pearson, Mike; Ullyott, J Stewart; Damaschke, Magret; Evans, Jane A; Goderis, Steven; Greaney, Susan; Huggett, Jennifer M; et al. (Public Library of Science (PLoS), 2021-08-04)
      Little is known of the properties of the sarsen stones (or silcretes) that comprise the main architecture of Stonehenge. The only studies of rock struck from the monument date from the 19th century, while 20th century investigations have focussed on excavated debris without demonstrating a link to specific megaliths. Here, we present the first comprehensive analysis of sarsen samples taken directly from a Stonehenge megalith (Stone 58, in the centrally placed trilithon horseshoe). We apply state-of-the-art petrographic, mineralogical and geochemical techniques to two cores drilled from the stone during conservation work in 1958. Petrographic analyses demonstrate that Stone 58 is a highly indurated, grain-supported, structureless and texturally mature groundwater silcrete, comprising fine-to-medium grained quartz sand cemented by optically-continuous syntaxial quartz overgrowths. In addition to detrital quartz, trace quantities of silica-rich rock fragments, Fe-oxides/hydroxides and other minerals are present. Cathodoluminescence analyses show that the quartz cement developed as an initial <10 μm thick zone of non-luminescing quartz followed by ~16 separate quartz cement growth zones. Late-stage Fe-oxides/hydroxides and Ti-oxides line and/or infill some pores. Automated mineralogical analyses indicate that the sarsen preserves 7.2 to 9.2 area % porosity as a moderately-connected intergranular network. Geochemical data show that the sarsen is chemically pure, comprising 99.7 wt. % SiO2. The major and trace element chemistry is highly consistent within the stone, with the only magnitude variations being observed in Fe content. Non-quartz accessory minerals within the silcrete host sediments impart a trace element signature distinct from standard sedimentary and other crustal materials. 143Nd/144Nd isotope analyses suggest that these host sediments were likely derived from eroded Mesozoic rocks, and that these Mesozoic rocks incorporated much older Mesoproterozoic material. The chemistry of Stone 58 has been identified recently as representative of 50 of the 52 remaining sarsens at Stonehenge. These results are therefore representative of the main stone type used to build what is arguably the most important Late Neolithic monument in Europe.
    • Measuring nest incorporation of anthropogenic debris by seabirds: An opportunistic approach increases geographic scope and reduces costs

      O'Hanlon, Nina J; Bond, AL; Masden, Elizabeth A; Lavers, Jennifer L; James, Neil A (Elsevier BV, 2021-07-14)
      Data on the prevalence of anthropogenic debris in seabird nests can be collected alongside other research or through community science initiatives to increase the temporal and spatial scale of data collection. To assess the usefulness of this approach, we collated data on nest incorporation of debris for 14 seabird species from 84 colonies across five countries in northwest Europe. Of 10,274 nests monitored 12% contained debris, however, there was large variation in the proportion of nests containing debris among species and colonies. For several species, the prevalence of debris in nests was significantly related to the mean Human Footprint Index (HFI), a proxy for human impact on the environment, within 100 km of the colony. Collecting opportunistic data on nest incorporation of debris by seabirds provides a cost-effective method of detecting changes in the prevalence of debris in the marine environment across a large geographic scale.
    • Petrographic and chemical studies of the Cretaceous-Paleogene boundary sequence at El Guayal, Tabasco, Mexico: Implications for ejecta plume evolution from the Chicxulub impact crater

      Salge, T; Tagle, Roald; Schmitt, Ralf-Thomas; Hecht, Lutz; Wolf Uwe, Reimold; Chris, Koeberl (Geological Society of America, 2021-06-30)
      A combined petrographic and chemical study of ejecta particles from the Cretaceous-Paleogene boundary sequence of El Guayal, Tabasco, Mexico (520 km SW of Chicxulub crater), was carried out to assess their formation conditions and genetic relation during the impact process. The reaction of silicate ejecta particles with hot volatiles during atmospheric transport may have induced alteration processes, e.g., silicification and cementation, observed in the ejecta deposits. The various microstructures of calcite ejecta particles are interpreted to reflect different thermal histories at postshock conditions. Spherulitic calcite particles may represent carbonate melts that were quenched during ejection. A recrystallized microstructure may indicate short, intense thermal stress. Various aggregates document particle-particle interactions and intermixing of components from lower silicate and upper sedimentary target lithologies. Aggregates of recrystallized calcite with silicate melt indicate the consolidation of a hot suevitic component with sediments at ≳750 °C. Accretionary lapilli formed in a turbulent, steam-condensing environment at ~100 °C by aggregation of solid, ash-sized particles. Concentric zones with smaller grain sizes of accreted particles indicate a recurring exchange with a hotter environment. Our results suggest that during partial ejecta plume collapse, hot silicate components were mixed with the fine fraction of local surface-derived sediments, the latter of which were displaced by the preceding ejecta curtain. These processes sustained a hot, gas-driven, lateral basal transport that was accompanied by a turbulent plume at a higher level. The exothermic back-reaction of CaO from decomposed carbonates and sulfates with CO2 to form CaCO3 may have been responsible for a prolonged release of thermal energy at a late stage of plume evolution.
    • Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America

      Maidment, Susannah; Dean, Christopher; Mansergh, Robert I; Butler, Richard J (The Royal Society, 2021-06-30)
      In order for palaeontological data to be informative to ecologists seeking to understand the causes of today's diversity patterns, palaeontologists must demonstrate that actual biodiversity patterns are preserved in our reconstructions of past ecosystems. During the Late Cretaceous, North America was divided into two landmasses, Laramidia and Appalachia. Previous work has suggested strong faunal provinciality on Laramidia at this time, but these arguments are almost entirely qualitative. We quantitatively investigated faunal provinciality in ceratopsid and hadrosaurid dinosaurs using a biogeographic network approach and investigated sampling biases by examining correlations between dinosaur occurrences and collections. We carried out a model-fitting approach using generalized least-squares regression to investigate the sources of sampling bias we identified. We find that while the raw data strongly support faunal provinciality, this result is driven by sampling bias. The data quality of ceratopsids and hadrosaurids is currently too poor to enable fair tests of provincialism, even in this intensively sampled region, which probably represents the best-known Late Cretaceous terrestrial ecosystem on Earth. To accurately reconstruct biodiversity patterns in deep time, future work should focus on smaller scale, higher resolution case studies in which the effects of sampling bias can be better controlled.
    • Six new species of Handaoia Seyrig, 1952 (Hymenoptera, Ichneumonidae, Phygadeuontinae): the first to be described from the New World

      Bordera, Santiago; Broad, G (Museum National D'Histoire Naturelle, 2021-06-30)
      Handaoia Seyrig, 1952 is a small genus of Phygadeuontinae currently represented by eleven described species from Madagascar, Tanzania and Europe, and can be recognized by the combination of the distally expanded and ventrally flattened antennal flagellum, complete posterior transverse carina of the mesosternum, isolated ‘pit’ (episternal scrobe) in the mesopleuron, and a single bulla in fore wing vein 2m-cu. Most species have a distinctive combined area basalis and area superomedia on the propodeum. The following six new species from Central and South America are described and illustrated: H. cuscoensis Bordera sp. nov. from Peru, H. fritzi sp. nov. from Brazil, H. mercedensis Bordera sp. nov. from Peru, H. plaumanni sp. nov. from Brazil, H. ruizcancinoi Bordera sp. nov. from Mexico, and H. urceus sp. nov. from Brazil. A key to the New World species is provided.
    • The early death of Colonel Robert C. Tytler and the afterlife of his collection

      Prys-Jones, Robert; Harding, Alison C; Rooke, Kathryn (British Ornithologists' Club, 2021-06-15)
      A letter by Allan Octavian Hume and three by Bertram Bevan-Petman, all written between 1904 and 1911 to Ernst Hartert, bird curator of Rothschild’s Tring Museum, are present in the Rothschild Tring archive, now held by the Natural History Museum. These shed light on both the probable cause of the early death in 1872 of Colonel Robert C. Tytler, British army officer and naturalist in colonial India, and on the somewhat convoluted fate of his collection subsequently.
    • Step by step towards citizen science — deconstructing youth participation in BioBlitzes

      Lorke, Julia; Ballard, Heidi L; Miller, Annie E; Swanson, Rebecca D; Pratt-Taweh, Sasha; Jennewein, Jessie N; Higgins, Lila; Johnson, Rebecca F; Young, Alison N; Ghadiri Khanaposhtani, Maryam; et al. (Sissa Medialab Srl, 2021-06-14)
      BioBlitzes, typically one-day citizen science (CS) events, provide opportunities for the public to participate in data collection for research and conservation, potentially promoting deeper engagement with science. We observed 81 youth at 15 BioBlitzes in the U.S. and U.K., identifying five steps participants use to create a biological record (Exploring, Observing, Identifying, Documenting and Recording). We found 67 youth engaged in at least one of the steps, but seldom in all, with rare participation in Recording which is crucial for contributing data to CS. These findings suggest BioBlitzes should reduce barriers to Recording for youth to increase engagement with science.