• Ontogeny of the maxilla in Neanderthals and their ancestors

      Lacruz, RS; Bromage, TG; O’Higgins, P; Arsuaga, J-L; Stringer, C; Godinho, RM; Warshaw, J; Martínez, I; Gracia-Tellez, A; de Castro, JMB; et al. (Springer Science and Business Media LLC, 2015-12-07)
      Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil’s Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.
    • Opal-A in the Nakhla meteorite: A tracer of ephemeral liquid water in the Amazonian crust of Mars

      Lee, MR; MacLaren, I; Andersson, SML; Kovács, A; Tomkinson, T; Mark, DF; Smith, CL (2015-08)
    • Open data and digital morphology

      Davies, TG; Rahman, IA; Lautenschlager, S; Cunningham, JA; Asher, RJ; Barrett, PM; Bates, KT; Bengtson, S; Benson, RB; Boyer, DM; et al. (2017-04-12)
    • Opening the Woods: Towards a Quantification of Neolithic Clearance Around the Somerset Levels and Moors

      Farrell, M; Bunting, MJ; Sturt, F; Grant, M; Aalbersberg, G; Batchelor, R; Brown, A; Druce, D; Hill, Thomas; Hollinrake, A; et al. (Springer Science and Business Media LLC, 2019-09-21)
      Environmental reconstructions from pollen records collected within archaeological landscapes have traditionally taken a broadly narrative approach, with few attempts made at hypothesis testing or formal assessment of uncertainty. This disjuncture between the traditional interpretive approach to palynological data and the requirement for detailed, locally specific reconstructions of the landscapes in which people lived has arguably hindered closer integration of palaeoecological and archaeological datasets in recent decades. Here we implement a fundamentally different method for reconstructing past land cover from pollen records to the landscapes of and around the Somerset Levels and Moors—the Multiple Scenario Approach (MSA)—to reconstruct land cover for a series of 200-year timeslices covering the period 4200–2000 cal BC. Modelling of both archaeological and sediment chronologies enables the integration of reconstructed changes in land cover with archaeological evidence of contemporary Neolithic human activity. The MSA reconstructions are presented as a series of land cover maps and as graphs of quantitative measures of woodland clearance tracked over time. Our reconstructions provide a more nuanced understanding of the scale and timing of Neolithic clearance than has previously been available from narrative-based interpretations of pollen data. While the archaeological record tends to promote a view of long-term continuity in terms of the persistent building of wooden structures in the wetlands, our new interpretation of the palynological data contributes a more dynamic and varying narrative. Our case study demonstrates the potential for further integration of archaeological and palynological datasets, enabling us to get closer to the landscapes in which people lived.
    • The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle

      Peijnenburg, KTCA; Janssen, AW; Wall-Palmer, D; Goetze, E; Maas, AE; Todd, JA; Marlétaz, F (Proceedings of the National Academy of Sciences, 2020-09-24)
      Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth’s carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between “sea butterflies” (Thecosomata; mucus-web feeders) and “sea angels” (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene–Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth’s carbon cycle over evolutionary timescales.
    • The origin of evolutionary storytelling

      Jenner, R; Fusco, G (Padova University PressPadova, Italy, 2019-01)
      Phylogenetics emerged in the second half of the nineteenth century as a discipline dedicated to constructing descriptive and explanatory narratives that traced the evolutionary origins of taxa and traits. Because ancestors and evolutionary transformations are empirically inaccessible, phylogeneticists had no choice but to use their more or less informed imagination to gain access to this epistemic hinterland. The explanatory power of phylogenetic hypotheses resides in their ability to trace back traits to their evolutionary origins. Hypothetical ancestors therefore became important epistemic tools as they were deliberately equipped with characters that could function as suitable evolutionary precursors for traits of interest. I argue that the precursor potential of hypothetical ancestors therefore became the first, more or less objective, phylogenetic optimality criterion.
    • The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

      Smith, M; Kynicky, J; Chen, X; Wenlei, S; Spratt, J; Jeffries, T; Brnicky, M; Kopriva, A; Cangeloosi, D (2018-03-04)
    • Orogen architecture and crustal growth from accretion to collision (IGCP#662): Scientific Activities 2018-2019

      Wang, Tao; Seltmann, Reimar; Huang, He; Tong, Ying; Gladkochub, Dmitry; O'Reilly, Suzanne Y.; van Staal, Cees; Hou, Zengqian; Safonova, Inna; Xiao, Wenjiao (International Union of Geological Sciences, 2020-07-15)
      The scientific board of the International Geoscience Programme (IGCP), jointly sponsored by IUGS and UNESCO, approved for funding in March 2018 the IGCP-662 project (2018-2023) entitled “Orogenic architecture and crustal growth from accretion to collision”. Four meetings and field excursion, as well as training courses, have been successfully held respectively in 2018 and 2019. The first workshop was held during 21th - 22nd September 2018 in Beijing, China, with a 5-day (15th - 19th September) preworkshop field trip and one-day (23 September 2018) post-conference training course on “Using isotopes in zircon and sulfides to understanding crust-mantle evolution”. The second workshop and field trip of the IGCP-662 project were held in Mongolia from July 4th - 10th, 2019. Besides, the IGCP-662 project joined as co-sponsor the organization of an international symposium “The Geology of Eurasia” held at the Helmholtz-Centre Potsdam - German Research Centre for Geosciences (GFZ) during 26th June - 1st July 2019.
    • Oscarkempffite, Ag10Pb4(Sb17Bi9)∑ 26S48, a new Sb-Bi member of the lillianite homologous series

      Topa, D; Makovicky, E; Paar, WH; Stanley, Christopher; Roberts, AC (2016-08)
    • An overlooked contributor to palaeontology—the preparator Richard Hall (b. 1839) and his work on an armoured dinosaur and a giant sea dragon

      Graham, M; Radley, Jonathan; Lomax, Dean; Brewer, Pip (Geological Curator, 2020-11-12)
      The work of Richard Hall, a fossil preparator at the British Museum (Natural History) in the late 19th century, has been largely unrecorded. It included the excavation, preparation and restoration of two important specimens: the dinosaur Polacanthus foxii and the ichthyosaur Temnodontosaurus platyodon. The painstaking reconstruction of the dorsal shield of Polacanthus took seven years to complete and enabled a supplemental note redescribing the specimen to be published in 1887. The significance of the discovery in 1898 of the Temnodontosaurus to the town of Stockton in Warwickshire was such that it featured in an article in Nature. It has entered the local folklore and remains celebrated on the town’s road signage and features as the logo of Stockton Primary School.
    • An overview of the tapeworms of vertebrate bowels of the earth

      Caira, JN; Jensen, K; Georgiev, BB; Kuchta, R; Littlewood, T; Mariaux, J; Scholz, T; Tkach, VV; Waeschenbach, A; Caira, JN; et al. (Lawrence, Kansas, 2017)
    • Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne

      Welker, F; Hajdinjak, M; Talamo, S; Jaouen, K; Dannemann, M; David, F; Julien, M; Meyer, M; Kelso, J; Barnes, I; et al. (National Academy of Sciences, 2016-09-16)
      In Western Europe, the Middle to Upper Paleolithic transition is associated with the disappearance of Neandertals and the spread of anatomically modern humans (AMHs). Current chronological, behavioral, and biological models of this transitional period hinge on the Châtelperronian technocomplex. At the site of the Grotte du Renne, Arcy-sur-Cure, morphological Neandertal specimens are not directly dated but are contextually associated with the Châtelperronian, which contains bone points and beads. The association between Neandertals and this “transitional” assemblage has been controversial because of the lack either of a direct hominin radiocarbon date or of molecular confirmation of the Neandertal affiliation. Here we provide further evidence for a Neandertal–Châtelperronian association at the Grotte du Renne through biomolecular and chronological analysis. We identified 28 additional hominin specimens through zooarchaeology by mass spectrometry (ZooMS) screening of morphologically uninformative bone specimens from Châtelperronian layers at the Grotte du Renne. Next, we obtain an ancient hominin bone proteome through liquid chromatography-MS/MS analysis and error-tolerant amino acid sequence analysis. Analysis of this palaeoproteome allows us to provide phylogenetic and physiological information on these ancient hominin specimens. We distinguish Late Pleistocene clades within the genus Homo based on ancient protein evidence through the identification of an archaic-derived amino acid sequence for the collagen type X, alpha-1 (COL10α1) protein. We support this by obtaining ancient mtDNA sequences, which indicate a Neandertal ancestry for these specimens. Direct accelerator mass spectometry radiocarbon dating and Bayesian modeling confirm that the hominin specimens date to the Châtelperronian at the Grotte du Renne.
    • Palladosilicide, Pd2Si, a new mineral from the Kapalagulu Intrusion, Western Tanzania and the Bushveld Complex, South Africa

      Cabri, LJ; McDonald, AM; Rudashevsky, NS; Poirier, G; Wilhelmij, HR; Zhe, W; Rudashevsky, VN; Stanley, Christopher (2015-04)
    • A parakeet specimen held at National Museums Scotland is a unique skin of the extinct Reunion Parakeet Psittacula eques eques: a reply to Cheke and Jansen ()

      Jones, CG; Jackson, HA; McGowan, RY; Hume, JP; Forshaw, JM; Tatayah, V; Winters, R; Groombridge, JJ (Wiley, 2018-11-02)
      Cheke and Jansen (2016) questioned the identity of a parakeet specimen at National Museums Scotland (NMS), Edinburgh, which is considered in a paper by Jackson et al. (2015) to be a specimen of the extinct R eunion Parakeet Psittacula eques eques (Boddaert, 1783). They suggest that with the available information, its provenance cannot be ascribed with any certainty and it is most likely, on the basis of probability, to be from Mauritius, although they do not exclude the possibility that the parakeet comes from R eunion, the neighbouring island of Mauritius. The provenance and identity of this specimen has previously been questioned (Jones 1987, Hume 2007, Hume & Walters 2012), with the possibility that it may be a Mauritius Parakeet Psittacula eques echo. Since these accounts were written, more work conducted on Psittacula parakeets of the Indian Ocean Islands indicates that the Edinburgh specimen is a R eunion Parakeet, and Cheke and Jansen (2016) would have been unaware of some of this work.
    • Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses

      Jenner, RA; von Reumont, BM; Campbell, LI; Undheim, EAB (Oxford University Press (OUP), 2019-08-08)
      Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.