Now showing items 1-20 of 1011

    • Analytical and Clinical Assessment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular Diagnosis of Urogenital Schistosomiasis

      Archer, John; Barksby, Rebecca; Pennance, T; Rostron, Penelope; Bakar, Faki; Knopp, Stefanie; Allan, F; Kabole, Fatma; Ali, Said M; Ame, Shaali M; et al. (MDPI AG, 2020-09-11)
      Accurate diagnosis of urogenital schistosomiasis is crucial for disease surveillance and control. Routine diagnostic methods, however, lack sensitivity when assessing patients with low levels of infection still able to maintain pathogen transmission. Therefore, there is a need for highly sensitive diagnostic tools that can be used at the point-of-care in endemic areas. Recombinase polymerase amplification (RPA) is a rapid and sensitive diagnostic tool that has been used to diagnose several pathogens at the point-of-care. Here, the analytical performance of a previously developed RPA assay (RT-ShDra1-RPA) targeting the Schistosoma haematobium Dra1 genomic region was assessed using commercially synthesised S. haematobium Dra1 copies and laboratory-prepared samples spiked with S. haematobium eggs. Clinical performance was also assessed by comparing diagnostic outcomes with that of a reference diagnostic standard, urine-egg microscopy. The RT-ShDra1-RPA was able to detect 1 × 101 copies of commercially synthesised Dra1 DNA as well as one S. haematobium egg within laboratory-spiked ddH2O samples. When compared with urine-egg microscopy, the overall sensitivity and specificity of the RT-ShDra1-RPA assay was 93.7% (±88.7–96.9) and 100% (±69.1–100), respectively. Positive and negative predictive values were 100% (±97.5–100) and 50% (±27.2–72.8), respectively. The RT-ShDra1-RPA therefore shows promise as a rapid and highly sensitive diagnostic tool able to diagnose urogenital schistosomiasis at the point-of-care.
    • Erratum to: Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium

      Webster, BL; Rabone, M; Pennance, T; Emery, AM; Allan, F; Gouvras, A; Knopp, S; Garba, A; Hamidou, AA; Mohammed, KA; et al. (Springer Science and Business Media LLC, 2015-10-09)
      Unfortunately, the original version of this article [1], contained a mistake. In Table 1, the primers for Sh6 and Sh9 were included incorrectly. Instead of GGGATGTATGCAGACTTG TTGTTTGGCTGCAGTAAC and GCTGAGCTTGAGATTG CTTCTGTCCCATCGATACC they should have been Sh6 Forward Primer GGTGGATTACGCAATAG, Sh6 Reverse Primer TTTAATCAACCGGGTGTC and Sh9 Forward Primer GGGATGTATGCAGACTTG, Sh9 Reverse Primer TTGTTTGGCTGCAGTAAC respectively. A corrected version of Table 1 is included below
    • Longitudinal survey on the distribution of Biomphalaria sudanica and B. choanomophala in Mwanza region, on the shores of Lake Victoria, Tanzania: implications for schistosomiasis transmission and control

      Gouvras, A; Allan, Fiona; Kinung’hi, Safari; Rabone, M; Emery, AM; Angelo, Teckla; Pennance, T; Webster, BL; Nagai, Honest; Rollinson, D (Springer Science and Business Media LLC, 2017-06-28)
      Background: Schistosomiasis is hyper-endemic in the Lake Victoria basin; with intestinal schistosomiasis plaguing communities adjacent to the lake, where the intermediate host snails live. The two intermediate host species of Schistosoma mansoni in the Mwanza region are Biomphalaria sudanica, found on the banks of the lakes, and B. choanomphala, found in the lake itself. There are few longitudinal surveys documenting changing abundance and differential transmission patterns of these Biomphalaria snails across seasons and years. We undertook 15 field surveys at 26 sites over four years to determine the parameters that influence Biomphalaria abundance, presence of S. mansoni-shedding snails and impact of schistosomiasis treatment interventions on transmission potential in the Mwanza region. Results: Statistical analysis revealed seasonal difference in the abundance of B. sudanica with the highest number of snails found in the dry season (Kruskal-Wallis χ <sup>2</sup> = 37.231, df = 3, P < 0.0001). Water measurements were not associated with B. sudanica abundance; however, high levels of rainfall did have a negative effect on B. sudanica [coefficient effect -0.1405, 95% CI (-0.2666, -0.0144)] and B. choanomphala abundance [coefficient effect -0.4388, 95% CI (-0.8546, -0.0231)] potentially due to inundation of sites "diluting" the snails and influencing collection outcome. Biomphalaria sudanica snails were found at all sites whereas B. choanomphala were far more focal and only found in certain sites. Shedding Biomphalaria did not show any variation between dry and rainy seasons; however, a decrease in shedding snails was observed in year 4 of the study. Conclusions: Biomphalaria sudanica is uniformly present in the Mwanza region whereas B. choanomphala is far more focal. Seasonality plays a role for B. sudanica abundance, likely due to its habitat preference on the banks of the lake, but not for B. choanomphala. The decrease in shedding Biomphalaria abundance in Year 4 could be linked to ongoing schistosomiasis treatment efforts in the neighbouring human populations. The highest number of shedding Biomphalaria was observed at sites with high levels of human movement. Prioritising snail control at such sites could greatly reduce transmission in these high-risk areas.
    • Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment

      Chevalier, Frédéric D; Le Clec’h, Winka; McDew-White, Marina; Menon, Vinay; Guzman, Meghan A; Holloway, Stephen P; Cao, Xiaohang; Taylor, Alexander B; Kinung'hi, Safari; Gouvras, Anouk N; et al. (Public Library of Science (PLoS), 2019-10-25)
      Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.
    • The detection of Schistosoma bovis in livestock on Pemba Island, Zanzibar: A preliminary study

      Pennance, T; Ame, Shaali M; Amour, Amour Khamis; Suleiman, Khamis Rashid; Cable, Jo; Webster, BL (Elsevier BV, 2021-10-15)
      Schistosoma bovis is a parasitic trematode of ungulates transmitted by freshwater snails in Sub-Saharan Africa causing bovine intestinal schistosomiasis that leads to chronic morbidity and significant agricultural economic losses. The recently reported occurrence of Bulinus globosus infected with S. bovis for the first time on Pemba Island (Zanzibar, United Republic of Tanzania) is a cause of concern for livestock/wildlife health and complicates the surveillance of Schistosoma haematobium. To confirm that local cattle are infected with S. bovis, fresh faecal samples were collected from six adult cows surrounding two schistosomiasis transmission sites in Kinyasini, Pemba Island. Schistosome eggs were concentrated, egg hatching stimulated and miracidia were individually captured and identified by analysis of the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) and the partial nuclear internal transcribed spacer region (ITS1+5.8S+ITS2). Two S. bovis miracidia were collected from one faecal sample with two cox1 haplotypes, one matching cox1 data obtained from S. bovis cercariae, collected previously at the same site in Pemba, the other matching S. bovis cox1 data originating from coastal Tanzania. The findings conclude that S. bovis transmission has been established on Pemba Island and is likely to have been imported through livestock trade with East Africa. Increasing the sensitivity of non-invasive diagnostics for bovine schistosomiasis, together with wider sampling, will enable a better assessment on the epidemiology of S. bovis on Pemba Island.
    • Diverging patterns of introgression from Schistosoma bovis across S. haematobium African lineages

      Rey, Olivier; Toulza, Eve; Chaparro, Cristian; Allienne, Jean-François; Kincaid-Smith, Julien; Mathieu-Begné, Eglantine; Allan, F; Rollinson, D; Webster, BL; Boissier, Jérôme (Public Library of Science (PLoS), 2021-02-05)
      Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here, we conducted a genomic comparative study and investigated the genomic relationships between S. haematobium, S. bovis and their hybrids using 19 isolates originating from a wide geographical range over Africa, including samples initially classified as S. haematobium (n = 11), S. bovis (n = 6) and S. haematobium x S. bovis hybrids (n = 2). Based on a whole genomic sequencing approach, we developed 56,181 SNPs that allowed a clear differentiation of S. bovis isolates from a genomic cluster including all S. haematobium isolates and a natural S. haematobium-bovis hybrid. All the isolates from the S. haematobium cluster except the isolate from Madagascar harbored signatures of genomic introgression from S. bovis. Isolates from Corsica, Mali and Egypt harbored the S. bovis-like Invadolysin gene, an introgressed tract that has been previously detected in some introgressed S. haematobium populations from Niger. Together our results highlight the fact that introgression from S. bovis is widespread across S. haematobium and that the observed introgression is unidirectional.
    • Intestinal Schistosomiasis and Giardiasis Co-Infection in Sub-Saharan Africa: Can a One Health Approach Improve Control of Each Waterborne Parasite Simultaneously?

      Archer, John; O’Halloran, Lisa; Al-Shehri, Hajri; Summers, Shannan; Bhattacharyya, Tapan; Kabaterine, Narcis B; Atuhaire, Aaron; Adriko, Moses; Arianaitwe, Moses; Stewart, Martyn; et al. (MDPI AG, 2020-08-25)
      Both intestinal schistosomiasis and giardiasis are co-endemic throughout many areas of sub-Saharan Africa, significantly impacting the health of millions of children in endemic areas. While giardiasis is not considered a neglected tropical disease (NTD), intestinal schistosomiasis is formally grouped under the NTD umbrella and receives significant advocacy and financial support for large-scale control. Although there are differences in the epidemiology between these two diseases, there are also key similarities that might be exploited within potential integrated control strategies permitting tandem interventions. In this review, we highlight these similarities and discuss opportunities for integrated control of giardiasis in low and middle-income countries where intestinal schistosomiasis is co-endemic. By applying new, advanced methods of disease surveillance, and by improving the provision of water, sanitation and hygiene (WASH) initiatives, (co)infection with intestinal schistosomiasis and/or giardiasis could not only be more effectively controlled but also better understood. In this light, we appraise the suitability of a One Health approach targeting both intestinal schistosomiasis and giardiasis, for if adopted more broadly, transmission of both diseases could be reduced to gain improvements in health and wellbeing.
    • Parasite Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa

      Webster, Joanne P; Neves, Maria Inês; Webster, BL; Pennance, T; Rabone, M; Gouvras, A; Allan, F; Walker, Martin; Rollinson, D (American Society of Tropical Medicine and Hygiene, 2020-05-12)
      Analyses of the population genetic structure of schistosomes under the "Schistosomiasis Consortium for Operational Research and Evaluation" (SCORE) contrasting treatment pressure scenarios in Tanzania, Niger, and Zanzibar were performed to provide supplementary critical information with which to evaluate the impact of these large-scale control activities and guide how activities could be adjusted. We predicted that population genetic analyses would reveal information on a range of important parameters including, but not exclusive to, recruitment and transmission of genotypes, occurrence of hybridization events, differences in reproductive mode, and degrees of inbreeding, and hence, the evolutionary potential, and responses of parasite populations under contrasting treatment pressures. Key findings revealed that naturally high levels of gene flow and mixing of the parasite populations between neighboring sites were likely to dilute any effects imposed by the SCORE treatment arms. Furthermore, significant inherent differences in parasite fecundity were observed, independent of current treatment arm, but potentially of major impact in terms of maintaining high levels of ongoing transmission in persistent "biological hotspot" sites. Within Niger, naturally occurring <i>Schistosoma haematobium/Schistosoma bovis</i> viable hybrids were found to be abundant, often occurring in significantly higher proportions than that of single-species <i>S. haematobium</i> infections. By examining parasite population genetic structures across hosts, treatment regimens, and the spatial landscape, our results to date illustrate key transmission processes over and above that which could be achieved through standard parasitological monitoring of prevalence and intensity alone, as well as adding to our understanding of <i>Schistosoma</i> spp. life history strategies in general.
    • Genetic Diversity within Schistosoma haematobium: DNA Barcoding Reveals Two Distinct Groups

      Webster, BL; Emery, AM; Webster, Joanne P; Gouvras, Anouk; Garba, Amadou; Diaw, Oumar; Seye, Mohmoudane M; Tchuente, Louis Albert Tchuem; Simoonga, Christopher; Mwanga, Joseph; et al. (Public Library of Science (PLoS), 2012-10-25)
      Background - Schistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected. Methodology/principal findings - To elucidate the genetic diversity of Schistosoma haematobium, a DNA 'barcoding' study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 snad1). The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1) that is predominately made up of parasites from the African mainland and the other (Group 2) that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1) representing 1574 (80%) of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands. Conclusions/significance - The high occurrence of the haplotype (H1) suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic 'bottleneck' followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis.
    • Genome-wide insights into adaptive hybridisation across the Schistosoma haematobium group in West and Central Africa

      Landeryou, Toby; Rabone, M; Allan, F; Maddren, Rosie; Rollinson, D; Webster, BL; Tchuem-Tchuenté, Louis-Albert; Anderson, Roy M; Emery, AM (Public Library of Science (PLoS), 2022-01-31)
      Schistosomiasis remains a public health concern across sub-Saharan Africa; current control programmes rely on accurate mapping and high mass drug administration (MDA) coverage to attempt disease elimination. Inter-species hybridisation can occur between certain species, changing epidemiological dynamics within endemic regions, which has the potential to confound control interventions. The impact of hybridisation on disease dynamics is well illustrated in areas of Cameroon where urogenital schistosomiasis, primarily due to Schistosoma haematobium and hybrid infections, now predominate over intestinal schistosomiasis caused by Schistosoma guineensis. Genetic markers have shown the ability to identify hybrids, however the underlying genomic architecture of divergence and introgression between these species has yet to be established. In this study, restriction site associated DNA sequencing (RADseq) was used on archived adult worms initially identified as; Schistosoma bovis (n = 4), S. haematobium (n = 9), S. guineensis (n = 3) and S. guineensis x S. haematobium hybrids (n = 4) from Mali, Senegal, Niger, São Tomé and Cameroon. Genome-wide evidence supports the existence of S. guineensis and S. haematobium hybrid populations across Cameroon. The hybridisation of S. guineensis x S. haematobium has not been demonstrated on the island of São Tomé, where all samples showed no introgression with S. haematobium. Additionally, all S. haematobium isolates from Nigeria, Mali and Cameroon indicated signatures of genomic introgression from S. bovis. Adaptive loci across the S. haematobium group showed that voltage-gated calcium ion channels (Ca v) could play a key role in the ability to increase the survivability of species, particularly in host systems. Where admixture has occurred between S. guineensis and S. haematobium, the excess introgressive influx of tegumental (outer helminth body) and antigenic genes from S. haematobium has increased the adaptive response in hybrids, leading to increased hybrid population fitness and viability.
    • Interrupting seasonal transmission of Schistosoma haematobium and control of soil-transmitted helminthiasis in northern and central Côte d’Ivoire: a SCORE study protocol

      Tian-Bi, Yves-Nathan T; Ouattara, Mamadou; Knopp, Stefanie; Coulibaly, Jean T; Hürlimann, Eveline; Webster, BL; Allan, Fiona; Rollinson, D; Meïté, Aboulaye; Diakité, Nana R; et al. (Springer Science and Business Media LLC, 2018-01-29)
      Background - To achieve a world free of schistosomiasis, the objective is to scale up control and elimination efforts in all endemic countries. Where interruption of transmission is considered feasible, countries are encouraged to implement a comprehensive intervention package, including preventive chemotherapy, information, education and communication (IEC), water, sanitation and hygiene (WASH), and snail control. In northern and central Côte d'Ivoire, transmission of Schistosoma haematobium is seasonal and elimination might be achieved. In a cluster-randomised trial, we will assess different treatment schemes to interrupt S. haematobium transmission and control soil-transmitted helminthiasis over a 3-year period. We will compare the impact of (i) arm A: annual mass drug administration (MDA) with praziquantel and albendazole before the peak schistosomiasis transmission season; (ii) arm B: annual MDA after the peak schistosomiasis transmission season; (iii) arm C: two yearly treatments before and after peak schistosomiasis transmission; and (iv) arm D: annual MDA before peak schistosomiasis transmission, coupled with chemical snail control using niclosamide. Methods/design - The prevalence and intensity of S. haematobium and soil-transmitted helminth infections will be assessed using urine filtration and Kato-Katz thick smears, respectively, in six administrative regions in northern and central parts of Côte d'Ivoire. Once a year, urine and stool samples will be collected and examined from 50 children aged 5-8 years, 100 children aged 9-12 years and 50 adults aged 20-55 years in each of 60 selected villages. Changes in S. haematobium and soil-transmitted helminth prevalence and intensity will be assessed between years and stratified by intervention arm. In the 15 villages randomly assigned to intervention arm D, intermediate host snails will be collected three times per year, before niclosamide is applied to the selected freshwater bodies. The snail abundance and infection rates over time will allow drawing inference on the force of transmission.<h4>Discussion</h4>This cluster-randomised intervention trial will elucidate whether in an area with seasonal transmission, the four different treatment schemes can interrupt S. haematobium transmission and control soil-transmitted helminthiasis. Lessons learned will help to guide schistosomiasis control and elimination programmes elsewhere in Africa.<h4>Trial registration</h4>ISRCTN ISRCTN10926858 . Registered 21 December 2016. Retrospectively registered.
    • Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma haematobium

      Rostron, Penelope; Pennance, T; Bakar, Faki; Rollinson, D; Knopp, Stefanie; Allan, Fiona; Kabole, Fatma; Ali, Said M; Ame, Shaali M; Webster, BL (Springer Science and Business Media LLC, 2019-11-04)
      Abstract Background Accurate diagnosis of urogenital schistosomiasis is vital for surveillance and control programmes. While a number of diagnostic techniques are available there is a need for simple, rapid and highly sensitive point-of-need (PON) tests in areas where infection prevalence and intensity are low. Recombinase Polymerase Amplification (RPA) is a sensitive isothermal molecular diagnostic technology that is rapid, portable and has been used at the PON for several pathogens. Results A real time fluorescence RPA assay (RT-ShDra1-RPA) targeting the Schistosoma haematobium Dra1 genomic repeat region was developed and was able to detect 1 fg of S. haematobium gDNA. Results were obtained within 10 minutes using a small portable battery powered tube scanner device that incubated reactions at 40 °C, whilst detecting DNA amplification and fluorescence over time. The assay’s performance was evaluated using 20 urine samples, with varying S. haematobium egg counts, from school children from Pemba Island, Zanzibar Archipelago, Tanzania. Prior to RPA analysis, samples were prepared using a quick crude field DNA extraction method, the Speed Extract Kit (Qiagen, Manchester, UK). Positive assay results were obtained from urine samples with egg counts of 1–926 eggs/10 ml, except for two samples, which had inconclusive results. These two samples had egg counts of two and three eggs/10 ml of urine. Conclusions The RT-ShDra1-RPA assay proved robust for S. haematobium gDNA detection and was able to amplify and detect S. haematobium DNA in urine samples from infected patients. The assay’s speed and portability, together with the use of crude sample preparation methods, could advance the rapid molecular diagnosis of urogenital schistosomiasis at the PON within endemic countries.
    • Knowledge, perceptions and practices regarding schistosomiasis among women living in a highly endemic rural district in Zimbabwe: implications on infections among preschool-aged children

      Mutsaka-Makuvaza, Masceline Jenipher; Matsena-Zingoni, Zvifadzo; Tshuma, Cremance; Katsidzira, Agnes; Webster, BL; Zhou, Xiao-Nong; Midzi, Nicholas (Springer Science and Business Media LLC, 2019-09-23)
      Abstract Background Schistosomiasis primarily affects poor and neglected communities due to their lack of safe water and sanitation facilities. In an effort to improve intervention strategies, the present study investigated the association of socio-demographic characteristics of women with their existing knowledge, perceptions and practices (KPP) in five urogenital schistosomiasis endemic rural communities in Zimbabwe. Methods In February 2016, a cross sectional study was conducted in which 426 women in rural Madziwa area, Shamva District were interviewed using a pretested structured questionnaire seeking their KPP and socio-demographic characteristics. Logistic regression analysis was performed to identify socio-demographic factors associated with the KPP variables. Results Among the 426 participants, 93.7% knew about schistosomiasis, while 97.7 and 87.5% understood the disease transmission and methods for prevention, respectively. A significantly higher percentage of women aged ≥ 30 years compared to those < 30 years indicated that infertility is a complication of untreated chronic schistosomiasis (OR: 1.7, 95% CI: 0.9–3.0). Compared to women who had no history of infection, those who had been infected before were more likely to think that they were currently infected (OR: 3.7, 95% CI: 2.4–6.0). Bathing in unsafe water sources was more common in non-apostolic compared to apostolic followers (OR: 2.1, 95% CI: 1.2–3.7). Sole use of unsafe water for domestic purposes was significantly higher in uneducated women compared to the educated (OR: 1.8, 95% CI: 1.0–3.1). Compared to women of the Chakondora community, those in Chihuri, Nduna and Kaziro were more likely to know that dysuria is a symptom of schistosomiasis while those in Chihuri were also likely to allow young children to perform water contact activities (OR: 2.9, 95% CI: 1.5–5.5). Conclusions Despite the high level of schistosomiasis awareness, some women had inadequate knowledge about the mode of transmission and preventive measures for schistosomiasis. Socio-demographic characteristics were associated with the KPP of women. Thus, disease control efforts should consider socio-demographic factors, which may influence the knowledge, perceptions and practices of occupants in a given setting.
    • The origin of evolutionary storytelling

      Jenner, Ronald; Fusco, G (Padova University Press, 2019-01)
    • Urogenital schistosomiasis and soil-transmitted helminthiasis (STH) in Cameroon: An epidemiological update at Barombi Mbo and Barombi Kotto crater lakes assessing prospects for intensified control interventions

      Campbell, Suzy J; Stothard, J Russell; O’Halloran, Faye; Sankey, Deborah; Durant, Timothy; Ombede, Dieudonné Eloundou; Chuinteu, Gwladys Djomkam; Webster, BL; Cunningham, Lucas; LaCourse, E James; et al. (Springer Science and Business Media LLC, 2017-02-27)
      Background - The crater lakes of Barombi Mbo and Barombi Kotto are well-known transmission foci of schistosomiasis and soil-transmitted helminthiasis having had several important control initiatives previously. To collect contemporary epidemiological information, a cross-sectional survey was undertaken inclusive of: signs and symptoms of disease, individual treatment histories, local water, sanitation and hygiene (WASH)-related factors and malacological surveillance, with molecular characterisation of specimens. Methods - At each lake, a community cross-sectional survey was undertaken using a combination of stool and urine parasitological sampling, and interview with pro-forma questionnaires. A total of 338 children and adults participated. Material from snail and parasite species were characterised by DNA methods. Results - Egg-patent prevalence of urogenital schistosomiasis was 8.7% at Barombi Mbo (all light-intensity infections) and 40.1% at Barombi Kotto (21.2% heavy-intensity infections). Intestinal schistosomiasis was absent. At Barombi Kotto, significantly more women reported signs and symptoms associated with female genital schistosomiasis. While there had been extensive recent improvement in WASH-related infrastructure at Barombi Mbo, water contact risk scores were higher among schistosomiasis-infected participants (P < 0.001) and at Barombi Kotto in general (P < 0.001). Across both lakes, mean prevalence of STH was very low (6.3%) evidencing an impressive decrease of 79.0% over the last decade; neither Strongyloides stercoralis nor Ascaris lumbricoides were found. A total of 29 freshwater sampling sites were inspected for snails, 13 in Barombi Mbo and 16 in Barombi Kotto; water chemistry differed significantly (P < 0.0001) between lakes for both mean pH (7.9 v. 9.6) and mean conductivity (64.3 μS v. 202.1 μS) respectively. Only two Bulinus camerunensis found on the central island of Barombi Kotto were observed to shed schistosome cercariae, but schistosome DNA was later detected in Bulinus sampled from both lakes as well as in Indoplanorbis exustus, an invasive species from Asia.<h4>Conclusions</h4>STH is currently at very low levels while urogenital schistosomiasis is of greatest concern at Barombi Kotto. This assessment highlights a unique opportunity for further study of the epidemiological dynamics at these crater lakes, to evaluate future intensified interventions both in terms of gaining and sustaining control at Barombi Kotto or in moving towards local interruption of transmission of both diseases at Barombi Mbo.
    • Bidirectional Introgressive Hybridization between a Cattle and Human Schistosome Species

      Huyse, Tine; Webster, BL; Geldof, Sarah; Stothard, J Russell; Diaw, Oumar T; Polman, Katja; Rollinson, D (Public Library of Science (PLoS), 2009-09-04)
      Schistosomiasis is a disease of great medical and veterinary importance in tropical and subtropical regions, caused by parasitic flatworms of the genus Schistosoma (subclass Digenea). Following major water development schemes in the 1980s, schistosomiasis has become an important parasitic disease of children living in the Senegal River Basin (SRB). During molecular parasitological surveys, nuclear and mitochondrial markers revealed unexpected natural interactions between a bovine and human Schistosoma species: S. bovis and S. haematobium, respectively. Hybrid schistosomes recovered from the urine and faeces of children and the intermediate snail hosts of both parental species, Bulinus truncatus and B. globosus, presented a nuclear ITS rRNA sequence identical to S. haematobium, while the partial mitochondrial cox1 sequence was identified as S. bovis. Molecular data suggest that the hybrids are not 1st generation and are a result of parental and/or hybrid backcrosses, indicating a stable hybrid zone. Larval stages with the reverse genetic profile were also found and are suggested to be F1 progeny. The data provide indisputable evidence for the occurrence of bidirectional introgressive hybridization between a bovine and a human Schistosoma species. Hybrid species have been found infecting B. truncatus, a snail species that is now very abundant throughout the SRB. The recent increase in urinary schistosomiasis in the villages along the SRB could therefore be a direct effect of the increased transmission through B. truncatus. Hybridization between schistosomes under laboratory conditions has been shown to result in heterosis (higher fecundity, faster maturation time, wider intermediate host spectrum), having important implications on disease prevalence, pathology and treatment. If this new hybrid exhibits the same hybrid vigour, it could develop into an emerging pathogen, necessitating further control strategies in zones where both parental species overlap.
    • Ancient Hybridization and Adaptive Introgression of an Invadolysin Gene in Schistosome Parasites

      Platt, Roy N; McDew-White, Marina; Le Clec’h, Winka; Chevalier, Frédéric D; Allan, Fiona; Emery, AM; Garba, Amadou; Hamidou, Amina A; Ame, Shaali M; Webster, Joanne P; et al. (Oxford University Press (OUP), 2019-06-27)
      Abstract - Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3–8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108–613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.
    • Isolation and preservation of schistosome eggs and larvae in RNAlater® facilitates genetic profiling of individuals

      Webster, BL (Springer Science and Business Media LLC, 2009-10-23)
      Although field-sampling procedures to capture gDNA from individual schistosome larval stages directly from their natural hosts exist, they do pose some technical and logistical challenges hampering certain epidemiological studies. The aim of this study was to develop, refine and evaluate an alternative methodology, which enables better preservation of large numbers of individual schistosome larval stages and eggs collected in low resource endemic areas, to provide PCR-quality DNA for multi-locus genetic analysis. The techniques reported here present simple and effective short-term field and long-term laboratory preservation and storage systems for individually sampled schistosome eggs and larval stages using a commercially available aqueous stabilisation reagent, RNAlater(R) eliminating the need for more cumbersome resources such as refrigerators, heaters and centrifuge equipment for immediate specimen processing. Adaptations to a general gDNA extraction method are described, that enables the acquisition of a gDNA extract (~50 mul), facilitating multiple molecular analyses of each sampled schistosome. The methodology provided PCR-quality mitochondrial and nuclear DNA from laboratory cercariae, miracidia and eggs that had been stored at up to 37 degrees C for 2 weeks and at 4 degrees C for 6 months and also from field collected samples. This present protocol provides significant epidemiological, ethical and practical advantages over existing sampling methods and has the potential to be transferred to studies on other organisms, especially where specimens are unable to be seen by the naked eye, are difficult to handle and need to be obtained from a field environment.
    • Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling

      Allan, Fiona; Ame, Shaali M; Tian-Bi, Yves-Nathan T; Hofkin, Bruce V; Webster, BL; Diakité, Nana R; N’Goran, Eliezer K; Kabole, Fatma; Khamis, Iddi S; Gouvras, Anouk N; et al. (American Society of Tropical Medicine and Hygiene, 2020-05-12)
      The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was created in 2008 to answer questions of importance to program managers working to reduce the burden of schistosomiasis in Africa. In the past, intermediate host snail monitoring and control was an important part of integrated schistosomiasis control. However, in Africa, efforts to control snails have declined dramatically over the last 30 years. A resurgence of interest in the control of snails has been prompted by the realization, backed by a World Health Assembly resolution (WHA65.21), that mass drug administration alone may be insufficient to achieve schistosomiasis elimination. SCORE has supported work on snail identification and mapping and investigated how xenomonitoring techniques can aid in the identification of infected snails and thereby identify potential transmission areas. Focal mollusciciding with niclosamide was undertaken in Zanzibar and Côte d'Ivoire as a part of elimination studies. Two studies involving biological control of snails were conducted: one explored the association of freshwater riverine prawns and snail hosts in Côte d'Ivoire and the other assessed the current distribution of <i>Procambarus clarkii</i>, the invasive Louisiana red swamp crayfish, in Kenya and its association with snail hosts and schistosomiasis transmission. SCORE also supported modeling studies on the importance of snail control in achieving elimination and a meta-analysis of the impact of molluscicide-based snail control programs on human schistosomiasis prevalence and incidence. SCORE's snail control studies contributed to increased investment in building capacity, and specimens collected during SCORE research deposited in the Schistosomiasis Collections at the Natural History Museum (SCAN) will provide a valuable resource for the years to come.
    • Idalatry

      Jenner, Ronald (2009-07)