The Museum’s vast collections of vertebrates, invertebrates, plants and microbes support our staff's unique expertise in evolutionary biology, biodiversity and systematics.

Recent Submissions

  • Characterization of methane-seep communities in a deep-sea area designated for oil and natural gas exploitation off Trinidad and Tobago

    Amon, Diva; Gobin, J; Van Dover, CL; Levin, LA; Marsh, L; Raineault, NA (Frontiers, 2017-10-30)
    Exploration of the deep ocean (>200 m) is taking on added importance as human development encroaches. Despite increasing oil and natural gas exploration and exploitation, the deep ocean of Trinidad and Tobago is almost entirely unknown. The only scientific team to image the deep seafloor within the Trinidad and Tobago Exclusive Economic Zone was from IFREMER in the 1980s. That exploration led to the discovery of the El Pilar methane seeps and associated chemosynthetic communities on the accretionary prism to the east of Trinidad and Tobago. In 2014, the E/V Nautilus, in collaboration with local scientists, visited two previously sampled as well as two unexplored areas of the El Pilar site between 998 and 1,629 m depth using remotely operated vehicles. Eighty-three megafaunal morphospecies from extensive chemosynthetic communities surrounding active methane seepage were observed at four sites. These communities were dominated by megafaunal invertebrates including mussels (Bathymodiolus childressi), shrimp (Alvinocaris cf. muricola), Lamellibrachia sp. 2 tubeworms, and Pachycara caribbaeum. Adjacent to areas of active seepage was an ecotone of suspension feeders including Haplosclerida sponges, stylasterids and Neovermilia serpulids on authigenic carbonates. Beyond this were large Bathymodiolus shell middens. Finally there was either a zone of sparse octocorals and other non-chemosynthetic species likely benefiting from the carbonate substratum and enriched production within the seep habitat, or sedimented inactive areas. This paper highlights these ecologically significant areas and increases the knowledge of the biodiversity of the Trinidad and Tobago deep ocean. Because methane seepage and chemosynthetic communities are related to the presence of extractable oil and gas resources, development of best practices for the conservation of biodiversity in Trinidad and Tobago waters within the context of energy extraction is critical. Potential impacts on benthic communities during oil and gas activities will likely be long lasting and include physical disturbance during drilling among others. Recommendations for the stewardship of these widespread habitats include: (1) seeking international cooperation; (2) holding wider stakeholder discussions; (3) adopting stringent environmental regulations; and (4) increasing deep-sea research to gather crucial baseline data in order to conduct appropriate marine spatial planning with the creation of marine protected areas.
  • Deepwater Exploration of the Marianas [in special issue: New Frontiers in Ocean Exploration: The E/V Nautilus, NOAA Ship Okeanos Explorer and R/V Falkor Field Season

    Amon, Diva; Fryer, P; Glickson, D; Pomponi, SA; Lobecker, E; Cantwell, K; Elliott, K; Sowers, D (The Oceanography Society, 2017-03-01)
  • Exploration of the Southern California Borderland

    Cormier, M-H; Bell, KLC; Sharuga, SM; Castillo, C; Conrad, J; Amon, Diva; Legg, M; Brennan, ML; Barnhill, K; Lovell, LL; et al. (The Oceanography Society, 2017-03-01)
  • From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean

    Lindh, MV; Maillot, BM; Shulse, CN; Gooday, AJ; Amon, Diva; Smith, CR; Church, MJ (Frontiers, 2017-09-08)
    Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.
  • Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies

    Cordes, EE; Jones, DOB; Schlacher, TA; Amon, Diva; Bernardino, AF; Brooke, S; Carney, R; DeLeo, DM; Dunlop, KM; Escobar-Briones, EG; et al. (Frontiers, 2016-09-16)
    The industrialization of the deep sea is expanding worldwide. Increasing oil and gas exploration activities in the absence of sufficient baseline data in deep-sea ecosystems has made environmental management challenging. Here, we review the types of activities that are associated with global offshore oil and gas development in water depths over 200 m, the typical impacts of these activities, some of the more extreme impacts of accidental oil and gas releases, and the current state of management in the major regions of offshore industrial activity including 18 exclusive economic zones. Direct impacts of infrastructure installation, including sediment resuspension and burial by seafloor anchors and pipelines, are typically restricted to a radius of ~100 m on from the installation on the seafloor. Discharges of water-based and low-toxicity oil-based drilling muds and produced water can extend over 2 km, while the ecological impacts at the population and community levels on the seafloor are most commonly on the order of 200–300 m from their source. These impacts may persist in the deep sea for many years and likely longer for its more fragile ecosystems, such as cold-water corals. This synthesis of information provides the basis for a series of recommendations for the management of offshore oil and gas development. An effective management strategy, aimed at minimizing risk of significant environmental harm, will typically encompass regulations of the activity itself (e.g., discharge practices, materials used), combined with spatial (e.g., avoidance rules and marine protected areas), and temporal measures (e.g., restricted activities during peak reproductive periods). Spatial management measures that encompass representatives of all of the regional deep-sea community types is important in this context. Implementation of these management strategies should consider minimum buffer zones to displace industrial activity beyond the range of typical impacts: at least 2 km from any discharge points and surface infrastructure and 200 m from seafloor infrastructure with no expected discharges. Although managing natural resources is, arguably, more challenging in deep-water environments, inclusion of these proven conservation tools contributes to robust environmental management strategies for oil and gas extraction in the deep sea.
  • Two new species of Sympagella (Porifera: Hexactinellida: Rossellidae) collected from the Clarion-Clipperton Zone, East Pacific

    HERZOG, S; Amon, DJ; Smith, CR; JANUSSEN, D (Biotaxa, 2018-08-31)
    Two new Hexactinellida species from the Clarion-Clipperton Zone (CCZ) in the East Pacific Ocean are described. They are the first described representatives of the genus Sympagella in this region. The new sponges were collected in 2013 during the ABYSSLINE Project´s first cruise, AB01, on board the RV Melville. The CCZ is known for its polymetallic nodules but megafaunal biodiversity is still poorly understood. Our findings suggest that the poriferan fauna of the eastern CCZ is both species rich and inadequately known, and that substantially more sampling and taxonomic studies of the CCZ sponge fauna are required to establish a megafaunal biogeography and evaluate potential extinction risks resulting from polymetallic-nodule mining.
  • The Caribbean needs big marine protected areas

    Gallagher, AJ; Amon, Diva; Bervoets, T; Shipley, ON; Hammerschlag, N; Sims, DW (American Association for the Advancement of Science (AAAS), 2020-02-14)
  • Eight urgent, fundamental and simultaneous steps needed to restore ocean health, and the consequences for humanity and the planet of inaction or delay

    Laffoley, D; Baxter, JM; Amon, Diva; Currie, DEJ; Downs, CA; Hall‐Spencer, JM; Harden‐Davies, H; Page, R; Reid, CP; Roberts, CM; et al. (Wiley, 2019-07-23)
    The ocean crisis is urgent and central to human wellbeing and life on Earth; past and current activities are damaging the planet's main life support system for future generations. We are witnessing an increase in ocean heat, disturbance, acidification, bio‐invasions and nutrients, and reducing oxygen levels. Several of these act like ratchets: once detrimental or negative changes have occurred, they may lock in place and may not be reversible, especially at gross ecological and ocean process scales. Each change may represent a loss to humanity of resources, ecosystem function, oxygen production and species. The longer we pursue unsuitable actions, the more we close the path to recovery and better ocean health and greater benefits for humanity in the future. We stand at a critical juncture and have identified eight priority issues that need to be addressed in unison to help avert a potential ecological disaster in the global ocean. They form a purposely ambitious agenda for global governance and are aimed at informing decision‐makers at a high level. They should also be of interest to the general public. Of all the themes, the highest priority is to rigorously address global warming and limit surface temperature rise to 1.5°C by 2100, as warming is the pre‐eminent factor driving change in the ocean. The other themes are establishing a robust and comprehensive High Seas Treaty, enforcing existing standards for Marine Protected Areas and expanding their coverage, especially in terms of high levels of protection, adopting a precautionary pause on deep‐sea mining, ending overfishing and destructive fishing practices, radically reducing marine pollution, putting in place a financing mechanism for ocean management and protection, and lastly, scaling up science/data gathering and facilitating data sharing. By implementing all eight measures in unison, as a coordinated strategy, we can build resilience to climate change, help sustain fisheries productivity, particularly for low‐income countries dependent on fisheries, protect coasts (e.g. via soft‐engineering/habitat‐based approaches), promote mitigation (e.g. carbon storage) and enable improved adaptation to rapid global change.
  • Challenges to the sustainability of deep-seabed mining

    Levin, Lisa; Amon, Diva; Lily, H (Springer, 2020-07-06)
    This Review focuses on whether the emerging industry of deep-seabed mining aligns with the sustainable development agenda. We cover motivations for deep-seabed mining, including to source metals for technology that assists with decarbonization, as well as governance issues surrounding the extraction of minerals. Questions of sustainability and ethics, including environmental, legal, social and rights-based challenges, are considered. Slowing the transition from exploration to exploitation and promoting a circular economy may have regulatory, technological and environmental benefits.
  • Deep-Sea Exploration of the US Gulf of Mexico with NOAA Ship Okeanos Explorer

    France, Scott C.; Amon, Diva; Messing, Charles; Skarke, Adam; Wagner, Daniel; White, Michael P.; Kennedy, BRC; Pawlenko, Nick (The Oceanography Society, 2019-03-01)
  • Mining deep-ocean mineral deposits: what are the ecological risks?

    Jones, Daniel; Amon, Diva; Chapman, Abbie (Mineralogical Society of America, 2018-10-01)
    A key question for the future management of the oceans is whether the mineral deposits that exist on the seafloor of the deep ocean can be extracted without significant adverse effects to the environment. The potential impacts of mining are wide-ranging and will vary depending on the type of metal-rich mineral deposit being mined. There is, currently, a significant lack of information about deep-ocean ecosystems and about potential mining technologies: thus, there could be many unforeseen impacts. Here, we discuss the potential ecological impacts of deep-ocean mining and identify the key knowledge gaps to be addressed. Baseline studies must be undertaken, as well as regular monitoring of a mine area, before, during, and after mineral extraction.
  • Deep-Sea Mining: Processes and Impacts

    Jones, Daniel; Amon, Diva; Chapman, Abbie (Oxford University Press, 2020-08-27)
    Mining the extensive accumulations of minerals on the seafloor of the deep ocean can provide important resources but also has the potential to lead to widespread environmental impacts. Some of these impacts are unknown but there are expected to be differences between the mining of the three main resource types: polymetallic nodules, seafloor massive sulphides and cobalt-rich crusts. Here we detail the mining processes as well as the expected impacts of mining and discuss their potential effects to deep-ocean ecosystems. We also highlight the missing evidence needed to underpin effective environmental management and regulation of the nascent deep-sea mining industry.
  • Deep-Sea Misconceptions Cause Underestimation of Seabed-Mining Impacts

    Smith, CR; Tunnicliffe, V; Colaço, A; Drazen, JC; Gollner, S; Levin, LA; Mestre, NC; Metaxas, A; Molodtsova, TN; Morato, T; et al. (Elsevier, 2020-07-31)
    Scientific misconceptions are likely leading to miscalculations of the environmental impacts of deepseabed mining. These result from underestimating mining footprints relative to habitats targeted and poor understanding of the sensitivity, biodiversity, and dynamics of deep-sea ecosystems. Addressing these misconceptions and knowledge gaps is needed for effective management of deep-seabed mining.
  • Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life

    Fryer, P; Wheat, CG; Williams, T; Kelley, C; Johnson, K; Ryan, J; Kurz, W; Shervais, J; Albers, E; Bekins, B; et al. (The Royal Society, 2020-01-06)
    The subduction of seamounts and ridge features at convergent plate boundaries plays an important role in the deformation of the overriding plate and influences geochemical cycling and associated biological processes. Active serpentinization of forearc mantle and serpentinite mud volcanism on the Mariana forearc (between the trench and active volcanic arc) provides windows on subduction processes. Here, we present (1) the first observation of an extensive exposure of an undeformed Cretaceous seamount currently being subducted at the Mariana Trench inner slope; (2) vertical deformation of the forearc region related to subduction of Pacific Plate seamounts and thickened crust; (3) recovered Ocean Drilling Program and International Ocean Discovery Program cores of serpentinite mudflows that confirm exhumation of various Pacific Plate lithologies, including subducted reef limestone; (4) petrologic, geochemical and paleontological data from the cores that show that Pacific Plate seamount exhumation covers greater spatial and temporal extents; (5) the inference that microbial communities associated with serpentinite mud volcanism may also be exhumed from the subducted plate seafloor and/or seamounts; and (6) the implications for effects of these processes with regard to evolution of life.
  • Successful Blue Economy Examples With an Emphasis on International Perspectives

    Wenhai, L; Cusack, C; Baker, M; Tao, W; Mingbao, C; Paige, K; Xiaofan, Z; Levin, L; Escobar, E; Amon, Diva; et al. (Frontiers Media SA, 2019-06-07)
    Careful definition and illustrative case studies are fundamental work in developing a Blue Economy. As blue research expands with the world increasingly understanding its importance, policy makers and research institutions worldwide concerned with ocean and coastal regions are demanding further and improved analysis of the Blue Economy. Particularly, in terms of the management connotation, data access, monitoring, and product development, countries are making decisions according to their own needs. As a consequence of this lack of consensus, further dialogue including this cases analysis of the blue economy is even more necessary. This paper consists of four chapters: (I) Understanding the concept of Blue Economy, (II) Defining Blue economy theoretical cases, (III) Introducing Blue economy application cases and (IV) Providing an outlook for the future. Chapters (II) and (III) summarizes all the case studies into nine aspects, each aiming to represent different aspects of the blue economy. This paper is a result of knowledge and experience collected from across the global ocean observing community, and is only made possible with encouragement, support and help of all members. Despite the blue economy being a relatively new concept, we have demonstrated our promising exploration in a number of areas. We put forward proposals for the development of the blue economy, including shouldering global responsibilities to protect marine ecological environment, strengthening international communication and sharing development achievements, and promoting the establishment of global blue partnerships. However, there is clearly much room for further development in terms of the scope and depth of our collective understanding and analysis.
  • 262 Voyages Beneath the Sea: a global assessment of macro- and megafaunal biodiversity and research effort at deep-sea hydrothermal vents

    Thaler, AD; Amon, Diva (PeerJ, 2019-08-06)
    For over 40 years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here, we provide the first systematic assessment of macrofaunal and megafaunal biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of family-level incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.
  • sFDvent: A global trait database for deep‐sea hydrothermal‐vent fauna

    Chapman, Abbie; Beaulieu, SE; Colaço, A; Gebruk, AV; Hilario, A; KIHARA, TC; Ramirez‐Llodra, E; Sarrazin, J; Tunnicliffe, V; Amon, Diva; et al. (Wiley, 2019-07-30)
    Motivation: Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite grow‐ ing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single re‐ pository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFD‐ vent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent da‐ tabase, describe our approach, and evaluate its scope. Finally, we compare the sFD‐ vent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained: Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain: Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain: sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement: Deep‐sea hydrothermal‐vent fauna with spe‐ cies‐level identification present or in progress. Software format: .csv and MS Excel (.xlsx).
  • Climate change considerations are fundamental to management of deep‐sea resource extraction

    Levin, Lisa; WEI, CHIH-LIN; Dunn, Daniel; Amon, Diva; Ashford, Oliver; Cheung, William; Colaco, Ana; Dominguez-Carrió, Carlos; Escobar Briones, Elva; Harden‐Davies, HR; et al. (Wiley, 2020-06-12)
    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
  • Deep-Sea Debris in the Central and Western Pacific Ocean

    Amon, Diva; Kennedy, BRC; Cantwell, K; Suhre, K; Glickson, D; Shank, TM; Rotjan, RD (Frontiers Media SA, 2020-05-27)
    Marine debris is a growing problem in the world’s deep ocean. The naturally slow biological and chemical processes operating at depth, coupled with the types of materials that are used commercially, suggest that debris is likely to persist in the deep ocean for long periods of time, ranging from hundreds to thousands of years. However, the realized scale of marine debris accumulation in the deep ocean is unknown due to the logistical, technological, and financial constraints related to deep-ocean exploration. Coordinated deep-water exploration from 2015 to 2017 enabled new insights into the status of deep-sea marine debris throughout the central and western Pacific Basin via ROV expeditions conducted onboard NOAA Ship Okeanos Explorer and RV Falkor. These expeditions included sites in United States protected areas and monuments, other Exclusive Economic Zones, international protected areas, and areas beyond national jurisdiction. Metal, glass, plastic, rubber, cloth, fishing gear, and other marine debris were encountered during 17.5% of the 188 dives from 150 to 6,000 m depth. Correlations were observed between deep-sea debris densities and depth, geological features, and distance from human-settled land. The highest densities occurred off American Samoa and the main Hawaiian Islands. Debris, mostly consisting of fishing gear and plastic, were also observed in most of the large-scale marine protected areas, adding to the growing body of evidence that even deep, remote areas of the ocean are not immune from human impacts. Interactions with and impacts on biological communities were noted, though further study is required to understand the full extent of these impacts. We also discuss potential sources and long-term implications of this debris.
  • Biological archives reveal contrasting patterns in trace element concentrations in pelagic seabird feathers over more than a century

    Bond, AL; Lavers, JL (Elsevier, 2020-08-01)
    Contamination of diverse environments and wild species by some contaminants is projected to continue and increase in coming decades. In the marine environment, large volumes of data to assess how concentrations have changed over time can be gathered from indicator species such as seabirds, including through sampling feathers from archival collections and museums. As apex predators, Flesh-footed Shearwaters (Ardenna carneipes) are subject to high concentrations of bioaccumulative and biomagnifying contaminants, and reflect the health of their local marine environment. We analysed Flesh-footed Shearwater feathers from Australia from museum specimens and live birds collected between 1900 and 2011 and assessed temporal trends in three trace elements of toxicological concern: cadmium, mercury, and lead. Concentrations of cadmium increased by 1.5% per year (95% CI: +0.6, +3.0), while mercury was unchanged through the time series (−0.3% per year; 05% CI: -2.1, +1.5), and lead decreased markedly (−2.1% per year, 95% CI: -3.2, −1.0). A reduction in birds’ trophic position through the 20th century, and decreased atmospheric emissions were the likely driving factors for mercury and lead, respectively. By combining archival material from museum specimens with contemporary samples, we have been able to further elucidate the potential threats posed to these apex predators by metal contamination.

View more