• 3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host

      Martin-Vega, D; Garbout, A; Ahmed, F; Wicklein, M; Goater, CP; Colwell, DD; Hall, MJR (Springer Science and Business Media LLC, 2018-06-05)
      Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host’s behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.
    • All Our Eggs In One Basket: Challenges of High Resolution X-Ray Micro-Computed Tomography of Great Auk Pinguinus impennis Eggshell

      Russell, D; Bernucci, A; Scott-Murray, A; Jackson, D; Ahmed, F; Garbout, A; Birkhead, T (2018-06-13)
    • Micro-computed tomography visualization of the vestigial alimentary canal in adult oestrid flies

      Martín-Vega, D; Garbout, A; Ahmed, F; Ferrer, LM; Lucientes, J; Colwell, DD; Hall, MJR (Wiley, 2018-02-16)
      Oestrid flies (Diptera: Oestridae) do not feed during the adult stage as they acquire all necessary nutrients during the parasitic larval stage. The adult mouthparts and digestive tract are therefore frequently vestigial; however, morphological data on the alimentary canal in adult oestrid flies are scarce and a proper visualization of this organ system within the adult body is lacking. The present work visualizes the morphology of the alimentary canal in adults of two oestrid species, Oestrus ovis L. and Hypoderma lineatum (de Villiers), with the use of non‐invasive micro‐computed tomography (micro‐CT) and compares it with the highly developed alimentary canal of the blow fly Calliphora vicina Robineau‐Desvoidy (Diptera: Calliphoridae). Both O. ovis and H. lineatum adults showed significant reductions of the cardia and the diameter of the digestive tract, an absence of the helicoidal portion of the midgut typical of other cyclorrhaphous flies, and a lack of crop and salivary glands. Given the current interest in the alimentary canal in adult dipterans in biomedical and developmental biology studies, further understanding of the morphology and development of this organ system in adult oestrids may provide valuable new insights in several areas of research.
    • New insights from old eggs – the shape and thickness of Great Auk Pinguinus impennis eggs

      Birkhead, T; Russell, D; Garbout, A; Attard, M; Thompson, J; Jackson, D (Wiley, 2020-02-09)
      We compared the shape and eggshell thickness of Great Auk Pinguinus impennis eggs with those of its closest relatives, the Razorbill Alca torda, Common Guillemot Uria aalge and Brünnich's Guillemot Uria lomvia, in order to gain additional insights into the breeding biology of the extinct Great Auk. The egg of the Great Auk was most similar in shape to that of Brünnich's Guillemot. The absolute thickness of the Great Auk eggshell was greater than that of the Common Guillemot and Razorbill egg, which is as expected given its greater size, but the relative shell thickness at the equator and pointed end (compared with the blunt end) was more similar to that of the Common Guillemot. On the basis of these and other results we suggest that Great Auk incubated in an upright posture in open habitat with little or no nest, where its pyriform egg shape provided stability and allowed safe manoeuvrability during incubation. On the basis of a recent phylogeny of the Alcidae, we speculate that a single brood patch, a pyriform egg and upright incubation posture, as in the Great Auk and the two Uria guillemots, is the ancestral state, and that the Razorbill – the Great Auk's closest relative – secondarily evolved two brood patches and an elliptical egg as adaptations for horizontal incubation, which provides flexibility in incubation site selection, allowing breeding in enclosed spaces such as crevices, burrows or under boulders, as well as on open ledges.