• Monitoring nest incorporation of anthropogenic debris by Northern Gannets across their range

      O'Hanlon, NJ; Bond, AL; Lavers, JL; Masden, EA; James, NA (Elsevier BV, 2019-09-06)
      Anthropogenic marine debris is a recognised global issue, which can impact a wide range of organisms. This has led to a rise in research focused on plastic ingestion, but quantitative data on entanglement are still limited, especially regarding seabirds, due to challenges associated with monitoring entanglement in the marine environment. However, for seabird species that build substantial surface nests there is the opportunity to monitor nest incorporation of debris that individuals collect as nesting material. Here, we monitored nest incorporation of anthropogenic marine debris by Northern Gannets (Morus bassanus) from 29 colonies across the species' range to determine a) the frequency of occurrence of incorporated debris and b) whether the Northern Gannet is a suitable indicator species for monitoring anthropogenic debris in the marine environment within their range. Using data obtained from visual observations, digital photography and published literature, we recorded incorporated debris in 46% of 7280 Northern Gannet nests, from all but one of 29 colonies monitored. Significant spatial variation was observed in the frequency of occurrence of debris incorporated into nests among colonies, partly attributed to when the colony was established and local fishing intensity. Threadlike plastics, most likely from fishing activities, was most frequently recorded in nests, being present in 45% of 5842 nests, in colonies where debris type was identified. Comparisons with local beach debris indicate a preference for threadlike plastics by Northern Gannets. Recording debris in gannet nests provides an efficient and non-invasive method for monitoring the effectiveness of actions introduced to reduce debris pollution from fishing activities in the marine environment.
    • Oil Vulnerability Index, Impact on Arctic Bird Populations (Proposing a Method for Calculating an Oil Vulnerability Index for the Arctic Seabirds)

      O’Hanlon, NJ; Bond, AL; James, NA; Masden, EA (Springer International Publishing, 2020-03-07)
      In recent decades, political and commercial interest in the Arctic’s resources has increased dramatically. With the projected increase in shipping activity and hydrocarbon extraction, there is an increased risk to marine habitats and organisms. This comes with concomitant threats to the fragile Arctic environment especially from oil, whether from shipping accidents, pipeline leaks, or sub-surface well blowouts. Seabirds are among the most threatened group of birds, and the main threats to these species at-sea are commercial fishing and pollution. Seabirds are vulnerable to oil pollution, which can result in mass mortality events. Species are affected to a differing extent, therefore it is important to objectively predict which species are most at risk from oil spills and where. Assessing the vulnerability of seabirds to oil is achieved through establishing an index for the sensitivity of seabirds to oil – Oil Vulnerability Index (OVI). This incorporates spatial information on the distribution and density of birds as well as on species specific behaviours and other life history characteristics. This chapter focuses on the threat of oil to seabirds, especially in the Arctic, and how an OVI can be used to highlight which species are most at risk and where within the Arctic region.