• Confocal laser scanning microscopy as a valuable tool in Diptera larval morphology studies

      Grzywacz, A; Góral, T; Szpila, K; Hall, MJR (Springer Science and Business Media LLC, 2014-09-19)
      Larval morphology of flies is traditionally studied using light microscopy, yet in the case of fine structures compound light microscopy is limited due to problems of resolution, illumination and depth of field, not allowing for precise recognition of sclerites’ edges and interactions. Using larval instars of cyclorrhaphan Diptera, we show the usefulness of confocal laser scanning microscopy (CLSM) for studying the morphological characters of immature stages by taking advantage of the autofluorescent properties of cephaloskeleton structures. We compare data obtained from killed but unprepared larvae with those from larvae prepared by clearing according to two commonly used methods, either with potassium hydroxide or with Hoyer’s medium. We also evaluated the CLSM application for examining already slide-mounted larvae stored in museum collections and those freshly prepared. Our results indicate that CLSM and 3D reconstruction are excellent for visualizing small, compound structures of cylrorrhaphan larvae cephaloskeleton, if appropriate clearing techniques, i.e. the application of KOH, are used. Maximum intensity projection of confocal data sets obtained from material freshly prepared and that stored in museum collection does not differ. Because of this and the fact that KOH is commonly used as a clearing method to examine the cephaloskeleton of Diptera larvae, it is possible, and highly recommended, to use slides already prepared with this method for re-examination by CLSM. We conclude that CLSM application can be an invaluable source of data for studies of larval morphology of Cyclorrhapha by way of taxonomic diagnoses, character identification and improvement in characters homologization.
    • Morphology of the first instar larva of obligatory traumatic myiasis agents (Diptera: Calliphoridae, Sarcophagidae)

      Szpila, K; Hall, MJR; Wardhana, AH; Pape, T (Springer Science and Business Media LLC, 2014-02-20)
      There are only three fly species that are obligate agents of traumatic myiasis of humans and livestock: a single species of flesh fly, Wohlfahrtia magnifica (Sarcophagidae), and two species of blow flies, Chrysomya bezziana and Cochliomyia hominivorax (Calliphoridae). The morphology of their first instar larvae is thoroughly and consistently documented here with light microscopy photographs and scanning electron microscopy micrographs. The following morphological structures are documented: pseudocephalon, antennal complex, maxillary palpus, oral ridges, thoracic and abdominal spinulation, spiracular field, posterior spiracles and cephaloskeleton. New diagnostic features drawn from the cephaloskeleton and the spinulation of abdominal segments, including the anal pad, are discovered and extensively described. Earlier descriptions in the literature are revisited, and major discrepancies between these and the results of the current study are discussed. The present results allow clarification, correction and, especially, complementation of information provided by earlier authors. The relatively distant taxonomic position of all three species is evidence that obligatory myiasis has arisen independently, and the extensively similar morphology in the first instar larvae of Chrysomya bezziana, Cochliomyia hominivorax and W. magnifica in comparison to necrophagous species, especially the enhancement of the anterior part of the cephaloskeleton and the segmental spinulation, is therefore best interpreted as homoplasic adaptations to a life strategy as obligate vertebrate parasites. An identification key for first instar larvae of all obligatory traumatic myiasis agents of mammals is provided.