• Decomposed liver has a significantly adverse affect on the development rate of the blowfly Calliphora vicina

      Richards, CS; Rowlinson, CC; Cuttiford, Lue; Grimsley, R; Hall, MJR (Springer Science and Business Media LLC, 2012-04-26)
      The development rate of immature Calliphora vicina reared on decomposed liver was significantly slower, by as much as 30 h (55.4 % of total development time) for mid-sized larvae, and 71 h (35.0 %) and 58 h (14.6 %) if using times to the onset of pupariation and eclosion, respectively, than those of immatures that developed on fresh whole pig's liver. Development rates of larvae reared on decomposed liver were also slower than those of larvae reared on minced pig's liver and frozen/thawed pig's liver. These results suggest that any estimate of minimum post-mortem interval may result in an over estimate if the blowflies used were developing on an already decomposed body.
    • Effects of storage temperature on the change in size of Calliphora vicina larvae during preservation in 80% ethanol

      Richards, CS; Rowlinson, CC; Hall, MJR (Springer Science and Business Media LLC, 2012-03-08)
      The size of immature blowflies is a common measure to estimate the minimum time between death and the discovery of a corpse, also known as the minimum post-mortem interval. This paper investigates the effects of preservation, in 80% ethanol, on the length and weight of first instar, second instar, feeding third instar, and post-feeding third instar Calliphora vicina larvae, at three different storage temperatures. For each larval stage, the length of larvae was recorded after 0 h, 3 h, 6 h, 9 h, 12 h, 24 h, 72 h, 7 days, 14 days, 30 days, 91 days, 182 days, 273 days, and 365 days of storage in 80% ethanol, at −25°C, 6°C and 24°C. Storage temperature had no statistically significant effect on the change in larval length and weight for all larval stages, but larval length and weight were significantly affected by the duration of preservation for first, second, and feeding third instar larvae, but not for post-feeding larvae. Generally, first and second instar larvae reduced in size over time, while feeding third instar larvae increased slightly in size, and post-feeding larvae did not change in size over time. The length of blowfly larvae preserved in 80% ethanol is not affected by constant storage temperatures between −25°C and +24°C, but we recommend that forensic entomologists should use the models provided to correct for changes in larval length that do become apparent over time.
    • Micro-computed tomography visualization of the vestigial alimentary canal in adult oestrid flies

      Martín-Vega, D; Garbout, A; Ahmed, F; Ferrer, LM; Lucientes, J; Colwell, DD; Hall, MJR (Wiley, 2018-02-16)
      Oestrid flies (Diptera: Oestridae) do not feed during the adult stage as they acquire all necessary nutrients during the parasitic larval stage. The adult mouthparts and digestive tract are therefore frequently vestigial; however, morphological data on the alimentary canal in adult oestrid flies are scarce and a proper visualization of this organ system within the adult body is lacking. The present work visualizes the morphology of the alimentary canal in adults of two oestrid species, Oestrus ovis L. and Hypoderma lineatum (de Villiers), with the use of non‐invasive micro‐computed tomography (micro‐CT) and compares it with the highly developed alimentary canal of the blow fly Calliphora vicina Robineau‐Desvoidy (Diptera: Calliphoridae). Both O. ovis and H. lineatum adults showed significant reductions of the cardia and the diameter of the digestive tract, an absence of the helicoidal portion of the midgut typical of other cyclorrhaphous flies, and a lack of crop and salivary glands. Given the current interest in the alimentary canal in adult dipterans in biomedical and developmental biology studies, further understanding of the morphology and development of this organ system in adult oestrids may provide valuable new insights in several areas of research.