• Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species

      Jabbar, A; Beveridge, I; Mohandas, N; Chilton, NB; Littlewood, T; Jex, AR; Gasser, RB (Springer Science and Business Media LLC, 2013-11-21)
      Background: Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results: The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions: The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species.
    • Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade

      Jackson, H; Strubbe, D; Tollington, S; Prys-Jones, R; Matthysen, E; Groombridge, JJ (2015-08)
    • Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises (Cylindraspis spp.)

      Kehlmaier, C; Graciá, E; Campbell, P; Hofmeyr, MD; SCHWEIGER, S; Martínez-Silvestre, A; Joyce, W; Fritz, U (Springer Science and Business Media LLC, 2019-11-25)
      The five extinct giant tortoises of the genus Cylindraspis belong to the most iconic species of the enigmatic fauna of the Mascarene Islands that went largely extinct after the discovery of the islands. To resolve the phylogeny and biogeography of Cylindraspis, we analysed a data set of 45 mitogenomes that includes all lineages of extant tortoises and eight near-complete sequences of all Mascarene species extracted from historic and subfossil material. Cylindraspis is an ancient lineage that diverged as early as the late Eocene. Diversification of Cylindraspis commenced in the mid-Oligocene, long before the formation of the Mascarene Islands. This rejects any notion suggesting that the group either arrived from nearby or distant continents over the course of the last millions of years or had even been translocated to the islands by humans. Instead, Cylindraspis likely originated on now submerged islands of the Réunion Hotspot and utilized these to island hop to reach the Mascarenes. The final diversification took place both before and after the arrival on the Mascarenes. With Cylindraspis a deeply divergent clade of tortoises became extinct that evolved long before the dodo or the Rodrigues solitaire, two other charismatic species of the lost Mascarene fauna.
    • Anglers’ Riverfly Monitoring Initiative (ARMI): A UK-wide citizen science project for water quality assessment

      Brooks, Stephen J.; Fitch, Ben; Davy-Bowker, John; Codesal, Soraya Alvarez (University of Chicago Press, 2019-04-11)
      The Anglers’ Riverfly Monitoring Initiative (ARMI) is a UK-wide citizen science project focused on river water quality assessment. There are currently >2000 ARMI volunteers monitoring >1600 sites that are organized into 35 regional hubs across the UK. ARMI is effective in the early detection of water pollution and complements the routine monitoring undertaken by the UK statutory environment agencies. ARMI volunteers are trained to take standardized 3-min kick-samples of freshwater invertebrates from a river site, and use these samples to produce an ARMI score based on the abundance of key pollution-sensitive taxa. ARMI scores and standard invertebrate monitoring metrics are closely correlated. Each sampling site has a ‘trigger level’ score set by the national regulatory authority—e.g., the Environment Agency (EA) in England. If the ARMI score falls below this trigger level, the regulatory authority is notified and agency officers investigate the cause of the low score. This process has resulted in many reports of pollution incidents that otherwise may have gone undiscovered but were instead rapidly detected and neutralized. In some cases, investigations resulted in fines being levied against those responsible. ARMI data have also proved useful in assessing the effectiveness of river restoration schemes. Here, we demonstrate the effectiveness of the ARMI as a structured citizen science program in enhancing the environmental protection of rivers. We also show that the ARMI program complements the work of statutory authorities and describe how it promotes community engagement with river environments.
    • Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae)

      Fernandez-Triana, J; Shaw, MR; Boudreault, C; Beaudin, M; Broad, G (Pensoft Publishers, 2020-03-23)
      A checklist of world species of Microgastrinae parasitoid wasps (Hymenoptera: Braconidae) is provided. A total of 81 genera and 2,999 extant species are recognized as valid, including 36 nominal species that are currently considered as species inquirendae. Two genera are synonymized under Apanteles. Nine lectotypes are designated. A total of 318 new combinations, three new replacement names, three species name amendments, and seven species status revised are proposed. Additionally, three species names are treated as nomina dubia, and 52 species names are considered as unavailable names (including 14 as nomina nuda). A total of three extinct genera and 12 extinct species are also listed. Unlike in many previous treatments of the subfamily, tribal concepts are judged to be inadequate, so genera are listed alphabetically. Brief diagnoses of all Microgastrinae genera, as understood in this paper, are presented. Illustrations of all extant genera (at least one species per genus, usually more) are included to showcase morphological diversity. Primary types of Microgastrinae are deposited in 108 institutions worldwide, although 76% are concentrated in 17 collections. Localities of primary types, in 138 countries, are reported. Recorded species distributions are listed by biogeographical region and by country. Microgastrine wasps are recorded from all continents except Antarctica; specimens can be found in all major terrestrial ecosystems, from 82°N to 55°S, and from sea level up to at least 4,500 m a.s.l. The Oriental (46) and Neotropical (43) regions have the largest number of genera recorded, whereas the Palaearctic region (28) is the least diverse. Currently, the highest species richness is in the Palearctic region (827), due to more historical study there, followed by the Neotropical (768) and Oriental (752) regions, which are expected to be the most species rich. Based on ratios of Lepidoptera and Microgastrinae species from several areas, the actual world diversity of Microgastrinae is expected to be between 30,000–50,000 species; although these ratios were mostly based on data from temperate areas and thus must be treated with caution, the single tropical area included had a similar ratio to the temperate ones. Almost 45,000 specimens of Microgastrinae from 67 different genera (83% of microgastrine genera) have complete or partial DNA barcode sequences deposited in the Barcode of Life Data System; the DNA barcodes represent 3,545 putative species or Barcode Index Numbers (BINs), as estimated from the molecular data. Information on the number of sequences and BINs per genus are detailed in the checklist. Microgastrinae hosts are here considered to be restricted to Eulepidoptera, i.e., most of the Lepidoptera except for the four most basal superfamilies (Micropterigoidea, Eriocranioidea, Hepialoidea and Nepticuloidea), with all previous literature records of other insect orders and those primitive Lepidoptera lineages being considered incorrect. The following nomenclatural acts are proposed: 1) Two genera are synonymyzed under Apanteles: Cecidobracon Kieffer & Jörgensen, 1910, new synonym and Holcapanteles Cameron, 1905, new synonym; 2) Nine lectotype designations are made for Alphomelon disputabile (Ashmead, 1900), Alphomelon nigriceps (Ashmead, 1900), Cotesia salebrosa (Marshall, 1885), Diolcogaster xanthaspis (Ashmead, 1900), Dolichogenidea ononidis (Marshall, 1889), Glyptapanteles acraeae (Wilkinson, 1932), Glyptapanteles guyanensis (Cameron, 1911), Glyptapanteles militaris (Walsh, 1861), and Pseudapanteles annulicornis Ashmead, 1900; 3) Three new replacement names are a) Diolcogaster aurangabadensis Fernandez-Triana, replacing Diolcogaster indicus (Rao & Chalikwar, 1970) [nec Diolcogaster indicus (Wilkinson, 1927)], b) Dolichogenidea incystatae Fernandez-Triana, replacing Dolichogenidea lobesia Liu & Chen, 2019 [nec Dolichogenidea lobesia Fagan-Jeffries & Austin, 2019], and c) Microplitis vitobiasi Fernandez-Triana, replacing Microplitis variicolor Tobias, 1964 [nec Microplitis varicolor Viereck, 1917]; 4) Three names amended are Apanteles irenecarrilloae Fernandez-Triana, 2014, Cotesia ayerzai (Brèthes, 1920), and Cotesia riverai (Porter, 1916); 5) Seven species have their status revised: Cotesia arctica (Thomson, 1895), Cotesia okamotoi (Watanabe, 1921), Cotesia ukrainica (Tobias, 1986), Dolichogenidea appellator (Telenga, 1949), Dolichogenidea murinanae (Capek & Zwölfer, 1957), Hypomicrogaster acarnas Nixon, 1965, and Nyereria nigricoxis (Wilkinson, 1932); 6) New combinations are given for 318 species: Alloplitis congensis, Alloplitis detractus, Apanteles asphondyliae, Apanteles braziliensis, Apanteles sulciscutis, Choeras aper, Choeras apollion, Choeras daphne, Choeras fomes, Choeras gerontius, Choeras helle, Choeras irates, Choeras libanius, Choeras longiterebrus, Choeras loretta, Choeras recusans, Choeras sordidus, Choeras stenoterga, Choeras superbus, Choeras sylleptae, Choeras vacillatrix, Choeras vacillatropsis, Choeras venilia, Cotesia asavari, Cotesia bactriana, Cotesia bambeytripla, Cotesia berberidis, Cotesia bhairavi, Cotesia biezankoi, Cotesia bifida, Cotesia caligophagus, Cotesia cheesmanae, Cotesia compressithorax, Cotesia delphinensis, Cotesia effrena, Cotesia euphobetri, Cotesia elaeodes, Cotesia endii, Cotesia euthaliae, Cotesia exelastisae, Cotesia hiberniae, Cotesia hyperion, Cotesia hypopygialis, Cotesia hypsipylae, Cotesia jujubae, Cotesia lesbiae, Cotesia levigaster, Cotesia lizeri, Cotesia malevola, Cotesia malshri, Cotesia menezesi, Cotesia muzaffarensis, Cotesia neptisis, Cotesia nycteus, Cotesia oeceticola, Cotesia oppidicola, Cotesia opsiphanis, Cotesia pachkuriae, Cotesia paludicolae, Cotesia parbhanii, Cotesia parvicornis, Cotesia pratapae, Cotesia prozorovi, Cotesia pterophoriphagus, Cotesia radiarytensis, Cotesia rangii, Cotesia riverai, Cotesia ruficoxis, Cotesia senegalensis, Cotesia seyali, Cotesia sphenarchi, Cotesia sphingivora, Cotesia transuta, Cotesia turkestanica, Diolcogaster abengouroui, Diolcogaster agama, Diolcogaster ambositrensis, Diolcogaster anandra, Diolcogaster annulata, Diolcogaster bambeyi, Diolcogaster bicolorina, Diolcogaster cariniger, Diolcogaster cincticornis, Diolcogaster cingulata, Diolcogaster coronata, Diolcogaster coxalis, Diolcogaster dipika, Diolcogaster earina, Diolcogaster epectina, Diolcogaster epectinopsis, Diolcogaster grangeri, Diolcogaster heterocera, Diolcogaster homocera, Diolcogaster indica, Diolcogaster insularis, Diolcogaster kivuana, Diolcogaster mediosulcata, Diolcogaster megaulax, Diolcogaster neglecta, Diolcogaster nigromacula, Diolcogaster palpicolor, Diolcogaster persimilis, Diolcogaster plecopterae, Diolcogaster plutocongoensis, Diolcogaster psilocnema, Diolcogaster rufithorax, Diolcogaster semirufa, Diolcogaster seyrigi, Diolcogaster subtorquata, Diolcogaster sulcata, Diolcogaster torquatiger, Diolcogaster tristiculus, Diolcogaster turneri, Diolcogaster vulcana, Diolcogaster wittei, Distatrix anthedon, Distatrix cerales, Distatrix cuspidalis, Distatrix euproctidis, Distatrix flava, Distatrix geometrivora, Distatrix maia, Distatrix tookei, Distatrix termina, Distatrix simulissima, Dolichogenidea agamedes, Dolichogenidea aluella, Dolichogenidea argiope, Dolichogenidea atreus, Dolichogenidea bakeri, Dolichogenidea basiflava, Dolichogenidea bersa, Dolichogenidea biplagae, Dolichogenidea bisulcata, Dolichogenidea catonix, Dolichogenidea chrysis, Dolichogenidea coffea, Dolichogenidea coretas, Dolichogenidea cyane, Dolichogenidea diaphantus, Dolichogenidea diparopsidis, Dolichogenidea dryas, Dolichogenidea earterus, Dolichogenidea ensiger, Dolichogenidea eros, Dolichogenidea evadne, Dolichogenidea falcator, Dolichogenidea gelechiidivoris, Dolichogenidea gobica, Dolichogenidea hyalinis, Dolichogenidea iriarte, Dolichogenidea lakhaensis, Dolichogenidea lampe, Dolichogenidea laspeyresiella, Dolichogenidea latistigma, Dolichogenidea lebene, Dolichogenidea lucidinervis, Dolichogenidea malacosomae, Dolichogenidea maro, Dolichogenidea mendosae, Dolichogenidea monticola, Dolichogenidea nigra, Dolichogenidea olivierellae, Dolichogenidea parallelis, Dolichogenidea pelopea, Dolichogenidea pelops, Dolichogenidea phaenna, Dolichogenidea pisenor, Dolichogenidea roepkei, Dolichogenidea scabra, Dolichogenidea statius, Dolichogenidea stenotelas, Dolichogenidea striata, Dolichogenidea wittei, Exoryza asotae, Exoryza belippicola, Exoryza hylas, Exoryza megagaster, Exoryza oryzae, Glyptapanteles aggestus, Glyptapanteles agynus, Glyptapanteles aithos, Glyptapanteles amenophis, Glyptapanteles antarctiae, Glyptapanteles anubis, Glyptapanteles arginae, Glyptapanteles argus, Glyptapanteles atylana, Glyptapanteles badgleyi, Glyptapanteles bataviensis, Glyptapanteles bistonis, Glyptapanteles borocerae, Glyptapanteles cacao, Glyptapanteles cadei, Glyptapanteles cinyras, Glyptapanteles eryphanidis, Glyptapanteles euproctisiphagus, Glyptapanteles eutelus, Glyptapanteles fabiae, Glyptapanteles fulvigaster, Glyptapanteles fuscinervis, Glyptapanteles gahinga, Glyptapanteles globatus, Glyptapanteles glyphodes, Glyptapanteles guierae, Glyptapanteles horus, Glyptapanteles intricatus, Glyptapanteles lamprosemae, Glyptapanteles lefevrei, Glyptapanteles leucotretae, Glyptapanteles lissopleurus, Glyptapanteles madecassus, Glyptapanteles marquesi, Glyptapanteles melanotus, Glyptapanteles melissus, Glyptapanteles merope, Glyptapanteles naromae, Glyptapanteles nepitae, Glyptapanteles nigrescens, Glyptapanteles ninus, Glyptapanteles nkuli, Glyptapanteles parasundanus, Glyptapanteles penelope, Glyptapanteles penthocratus, Glyptapanteles philippinensis, Glyptapanteles philocampus, Glyptapanteles phoebe, Glyptapanteles phytometraduplus, Glyptapanteles propylae, Glyptapanteles puera, Glyptapanteles seydeli, Glyptapanteles siderion, Glyptapanteles simus, Glyptapanteles speciosissimus, Glyptapanteles spilosomae, Glyptapanteles subpunctatus, Glyptapanteles thespis, Glyptapanteles thoseae, Glyptapanteles venustus, Glyptapanteles wilkinsoni, Hypomicrogaster samarshalli, Iconella cajani, Iconella detrectans, Iconella jason, Iconella lynceus, Iconella pyrene, Iconella tedanius, Illidops azamgarhensis, Illidops lamprosemae, Illidops trabea, Keylimepie striatus, Microplitis adisurae, Microplitis mexicanus, Neoclarkinella ariadne, Neoclarkinella curvinervus, Neoclarkinella sundana, Nyereria ituriensis, Nyereria nioro, Nyereria proagynus, Nyereria taoi, Nyereria vallatae, Parapanteles aethiopicus, Parapanteles alternatus, Parapanteles aso, Parapanteles atellae, Parapanteles bagicha, Parapanteles cleo, Parapanteles cyclorhaphus, Parapanteles demades, Parapanteles endymion, Parapanteles epiplemicidus, Parapanteles expulsus, Parapanteles fallax, Parapanteles folia, Parapanteles furax, Parapanteles hemitheae, Parapanteles hyposidrae, Parapanteles indicus, Parapanteles javensis, Parapanteles jhaverii, Parapanteles maculipalpis, Parapanteles maynei, Parapanteles neocajani, Parapanteles neohyblaeae, Parapanteles nydia, Parapanteles prosper, Parapanteles prosymna, Parapanteles punctatissimus, Parapanteles regalis, Parapanteles sarpedon, Parapanteles sartamus, Parapanteles scultena, Parapanteles transvaalensis, Parapanteles turri, Parapanteles xanthopholis, Pholetesor acutus, Pholetesor brevivalvatus, Pholetesor extentus, Pholetesor ingenuoides, Pholetesor kuwayamai, Promicrogaster apidanus, Promicrogaster briareus, Promicrogaster conopiae, Promicrogaster emesa, Promicrogaster grandicula, Promicrogaster orsedice, Promicrogaster repleta, Promicrogaster typhon, Sathon bekilyensis, Sathon flavofacialis, Sathon laurae, Sathon mikeno, Sathon ruandanus, Sathon rufotestaceus, Venanides astydamia, Venanides demeter, Venanides parmula, and Venanides symmysta.
    • An annotated catalogue of type specimens of the land snail genus Cyclophorus Monfort, 1810 (Caenogastropoda, Cyclophoridae) in the Natural History Museum, London

      Panha, S; Nantarat, N; Sutcharit, C; Tongkerd, P; Ablett, J; Naggs, F (Pensoft Publishers, 2014-05-23)
      The collection of land caenogastropod snails in the genus Cyclophorus Monfort, 1810 housed in the Natural History Museum, London (NHM), includes 52 type lots. Lectotypes have been designated for 43 available species-level names to stabilize existing nomenclature, two previously designated lectotype, two holotypes, one paratype, one syntype, one possible syntype and two paralectotypes are also listed. A complete catalogue of the Cyclophorus types in NHM, London is provided for the first time.
    • An annotated type catalogue of seven genera of operculate land snails (Caenogastropoda, Cyclophoridae) in the Natural History Museum, London

      Sutcharit, C; Ablett, J; Panha, S (Pensoft, 2019-05-07)
      The collection of the seven cyclophorid snail genera housed in the Natural History Museum, London (NHM), includes 95 available species-level names belonging to the genera Pterocyclos Benson, 1832, Cyclotus Swainson, 1840, Myxostoma Troschel, 1847, Rhiostoma Benson, 1860, Scabrina Blanford, 1863, Crossopoma Martens, 1891, and Pearsonia Kobelt, 1902. Lectotypes are here designated for twelve available species-level names to stabilise existing the nomenclature. A complete catalogue of these types, including colour photographs, is provided for the first time. After examining these type specimens, an unpublished manuscript name was found and is described herein as Pterocyclos anamullayensis Sutcharit & Panha, sp. n.
    • Annotated type catalogue of the Amphibulimidae (Mollusca, Gastropoda, Orthalicoidea) in the Natural History Museum, London

      Breure, A; Ablett, J (Pensoft Publishers, 2011-10-19)
      The type status is described of 39 taxa classified within the family Amphibulimidae (superfamily Orthalicoidea) and kept in the London museum. One taxon, Bulimus elaeodes Pfeiffer, 1853, is removed to the Strophocheilidae. Lectotypes are designated for Bulimus adoptus Reeve, 1849; Bulimus (Eurytus) eros Angas, 1878; Helix onca d’Orbigny, 1835; Amphibulima pardalina Guppy, 1868. The type status of the following taxon is changed to lectotype in accordance with Art. 74.6 ICZN: Strophocheilus (Dryptus) jubeus Fulton, 1908. As general introduction to this and following papers on Orthalicoid types in the Natural History Museum, a brief history of the London collection is given and several examples of handwriting from different authors are presented.
    • Annotated type catalogue of the Bothriembryontidae and Odontostomidae (Mollusca, Gastropoda, Orthalicoidea) in the Natural History Museum, London

      Breure, A; Ablett, J (Pensoft Publishers, 2012-04-10)
      The type status is described for specimens of 84 taxa classified within the families Bothriembryontidae and Odontostomidae (superfamily Orthalicoidea) and kept in the Natural History Museum, London. Lectotypes are designated for Bulimus (Liparus) brazieri Angas, 1871; Bulimus broderipii Sowerby I, 1832; Bulimus fuligineus Pfeiffer, 1853; Helix guarani d’Orbigny, 1835; Bulimus (Tomigerus) ramagei E.A. Smith, 1890; Helix rhodinostoma d’Orbigny, 1835; Bulimus (Bulimulus) ridleyi E.A. Smith, 1890. The type status of the following taxa is changed to lectotype in accordance with Art. 74.6 ICZN: Placostylus (Euplacostylus) cylindricus Fulton, 1907; Bulimus pyrostomus Pfeiffer, 1860; Bulimus turneri Pfeiffer, 1860. The following taxon is synonymised: Bulimus oblitus Reeve, 1848 = Bahiensis neglectus (Pfeiffer, 1847).
    • Annotated type catalogue of the Bulimulidae (Mollusca, Gastropoda, Orthalicoidea) in the Natural History Museum, London

      Breure, A; Ablett, J (Pensoft Publishers, 2014-03-21)
      The type status is described of 404 taxa classified within the family Bulimulidae (superfamily Orthalicoidea) and kept in the London museum. Lectotypes are designated for Bulimus aurifluus Pfeiffer, 1857; Otostomus bartletti H. Adams, 1867; Helix cactorum d’Orbigny, 1835; Bulimus caliginosus Reeve, 1849; Bulimus chemnitzioides Forbes, 1850; Bulimus cinereus Reeve, 1849; Helix cora d’Orbigny, 1835; Bulimus fallax Pfeiffer, 1853; Bulimus felix Pfeiffer, 1862; Bulimus fontainii d’Orbigny, 1838; Bulimus fourmiersi d’Orbigny, 1837; Bulimus (Mesembrinus) gealei H. Adams, 1867; Bulimus gruneri Pfeiffer, 1846; Bulimus humboldtii Reeve, 1849; Helix hygrohylaea d’Orbigny, 1835; Bulimus jussieui Pfeiffer, 1846; Bulimulus (Drymaeus) binominis lascellianus E.A. Smith, 1895; Helix lichnorum d’Orbigny, 1835; Bulimulus (Drymaeus) lucidus da Costa, 1898; Bulimus luridus Pfeiffer, 1863; Bulimus meleagris Pfeiffer, 1853; Bulimus monachus Pfeiffer, 1857; Bulimus montagnei d’Orbigny, 1837; Helix montivaga d’Orbigny, 1835; Bulimus muliebris Reeve, 1849; Bulimus nigrofasciatus Pfeiffer in Philippi 1846; Bulimus nitelinus Reeve, 1849; Helix oreades d’Orbigny, 1835; Helix polymorpha d’Orbigny, 1835; Bulimus praetextus Reeve, 1849; Bulinus proteus Broderip, 1832; Bulimus rusticellus Morelet, 1860; Helix sporadica d’Orbigny, 1835; Bulimus sulphureus Pfeiffer, 1857; Helix thamnoica var. marmorata d’Orbigny, 1835; Bulinus translucens Broderip in Broderip and Sowerby I 1832; Helix trichoda d’Orbigny, 1835; Bulinus ustulatus Sowerby I, 1833; Bulimus voithianus Pfeiffer, 1847; Bulimus yungasensis d’Orbigny, 1837. The type status of the following taxa is changed to lectotype in accordance with Art. 74.6 ICZN: Bulimulus (Drymaeus) caucaensis da Costa, 1898; Drymaeus exoticus da Costa, 1901; Bulimulus (Drymaeus) hidalgoi da Costa, 1898; Bulimulus (Drymaeus) interruptus Preston, 1909; Bulimulus (Drymaeus) inusitatus Fulton, 1900; Bulimulus latecolumellaris Preston, 1909; Bulimus (Otostomus) napo Angas, 1878; Drymaeus notabilis da Costa, 1906; Drymaeus notatus da Costa, 1906; Bulimulus (Drymaeus) nubilus Preston, 1903; Drymaeus obliquistriatus da Costa, 1901; Bulimus (Drymaeus) ochrocheilus E.A. Smith, 1877; Bulimus (Drymaeus) orthostoma E.A. Smith, 1877; Drymaeus expansus perenensis da Costa, 1901; Bulimulus pergracilis Rolle, 1904; Bulimulus (Drymaeus) plicatoliratus da Costa, 1898; Drymaeus prestoni da Costa, 1906; Drymaeus punctatus da Costa, 1907; Bulimus (Leptomerus) sanctaeluciae E.A. Smith, 1889; Bulimulus (Drymaeus) selli Preston, 1909; Drymaeus subventricosus da Costa, 1901; Bulimulus (Drymaeus) tigrinus da Costa, 1898; Drymaeus volsus Fulton, 1907; Drymaeus wintlei Finch, 1929; Bulimus zhorquinensis Angas, 1879; Bulimulus (Drymaeus) ziczac da Costa, 1898. The following junior subjective synonyms are established: Bulimus antioquensis Pfeiffer, 1855 = Bulimus baranguillanus Pfeiffer, 1853; Drymaeus bellus da Costa, 1906 = Drymaeus blandi Pilsbry, 1897; Bulimus hachensis Reeve 1850 = Bulimus gruneri Pfeiffer, 1846 = Bulimus columbianus Lea, 1838; Bulimus (Otostomus) lamas Higgins 1868 = Bulimus trujillensis Philippi, 1867; Bulimulus (Drymaeus) binominis lascellianus E.A. Smith, 1895 = Bulimulus (Drymaeus) binominis E.A. Smith, 1895; Drymaeus multispira da Costa, 1904 = Helix torallyi d’Orbigny, 1835; Bulimulus (Drymaeus) plicatoliratus Da Costa, 1898 = Bulimus convexus Pfeiffer, 1855; Bulimus sugillatus Pfeiffer, 1857 = Bulimus rivasii d’Orbigny, 1837; Bulimus meridionalis Reeve 1848 [June] = Bulimus voithianus Pfeiffer, 1847. New combinations are: Bostryx montagnei (d’Orbigny, 1837); Bostryx obliquiportus (da Costa, 1901); Bulimulus heloicus (d’Orbigny, 1835); Drymaeus (Drymaeus) lusorius (Pfeiffer, 1855); Drymaeus (Drymaeus) trigonostomus (Jonas, 1844); Drymaeus (Drymaeus) wintlei Finch, 1929; Drymaeus (Mesembrinus) conicus da Costa, 1907; Kuschelenia (Kuschelenia) culminea culminea (d’Orbigny, 1835); Kuschelenia (Kuschelenia) culmineus edwardsi (Morelet, 1863); Kuschelenia (K.) gayi (Pfeiffer, 1857); Kuschelenia (Kuschelenia) tupacii (d’Orbigny, 1835); Kuschelenia (Vermiculatus) anthisanensis (Pfeiffer, 1853); Kuschelenia (Vermiculatus) aquilus (Reeve, 1848); Kuschelenia (Vermiculatus) bicolor (Sowerby I, 1835); Kuschelenia (Vermiculatus) caliginosus (Reeve, 1849); Kuschelenia (Vermiculatus) cotopaxiensis (Pfeiffer, 1853); Kuschelenia (Vermiculatus) filaris (Pfeiffer, 1853); Kuschelenia (Vermiculatus) ochracea (Morelet, 1863); Kuschelenia (Vermiculatus) petiti (Pfeiffer, 1846); Kuschelenia (Vermiculatus) purpuratus (Reeve, 1849); Kuschelenia (Vermiculatus) quechuarum (Crawford, 1939); Naesiotus cinereus (Reeve, 1849); Naesiotus dentritis (Morelet, 1863); Naesiotus fontainii (d’Orbigny, 1838); Naesiotus orbignyi (Pfeiffer, 1846); Protoglyptus pilosus (Guppy, 1871); Protoglyptus sanctaeluciae (E.A. Smith, 1889). Type material of the following taxa is figured herein for the first time: Bulimus cinereus Reeve, 1849; Bulimus coriaceus Pfeiffer, 1857; Bulimulus laxostylus Rolle, 1904; Bulimus pliculatus Pfeiffer, 1857; Bulimus simpliculus Pfeiffer, 1855.
    • Anthicidae

      Telnov, D; Orlova-Bienkowskaja, M (Mukhametov G.V., 2019-07-01)
      The inventory includes information about 184 alien beetle species established European Russia. For each species the following information is provided: biology, economic impact, methods of detection and identification, possible vectors of invasion, native range, current range, first record in European Russia, recent distribution in European Russia, history of invasion, reliability of assignment of the species to alien species and official status (for quarantine species and species included to European Alien Species Information Network). For each species the diagnostic characters and reference to identification guides are included. For the most of species original photos are provided. The inventory is intended for entomologists, which study fauna of beetles in different regions of Russia, for environmental protection organizations, plant quarantine and plant protection services.
    • Aristelliger praesignis (Jamaican Croaking Lizard). Maximum Size.

      Campbell, P; Bauer, AM; Griffing, AH; Deboer, JC (Ssar, 2017-03-22)
    • Assessing gaps in reporting non-target mortality in island rodent eradication operations

      Ward, S; Fournier, AMV; Bond, AL (Springer Science and Business Media LLC, 2019-06-25)
      Eradicating invasive species is a key part of island restoration, and can reverse the devastating impacts on native biota. Rodents are one of the most widespread invasive species, found on 80% of oceanic island systems, but have been removed from hundreds of islands through the application of anticoagulant-treated cereal bait. While such eradication operations are often net positive events for island ecosystems over the long-term, some native biota are also susceptible, resulting in short-term non-target mortality. One of the most widely distributed groups of birds, rails and allies (Rallidae) are highly adaptable, often endemic, and are known often to suffer mortality during rodent eradication operations, to varying degrees. Our goal was determine if the year of eradication or the size of the island predicted whether non-target mortalities were reported, including those that were true absences of mortality. We examined 122 eradication operations on 81 islands with rails present from 1983 to 2015, and found 78% with no reported information on non-target mortality using our search criteria. We found non-target mortality reporting has decreased over time, and there was no relationship with island size. Post-operational monitoring of eradication operations should thoroughly record non-target mortality to improve our understanding of factors affecting non-target mortality, and the efficacy of mitigation measures.
    • Assessing myxozoan presence and diversity using environmental DNA

      Hartikainen, H; Bass, D; Briscoe, AG; Knipe, H; Green, AJ; Okamura, B (2016-11)
    • Assessing the feasibility of interrupting the transmission of soil-transmitted helminths through mass drug administration: The DeWorm3 cluster randomized trial protocol

      Ásbjörnsdóttir, KH; Ajjampur, SSR; Anderson, RM; Bailey, R; Gardiner, I; Halliday, KE; Ibikounle, M; Kalua, K; Kang, G; Littlewood, T; et al. (2018-01-18)
    • Assessment of Heavy Metal Toxicity in Four Species of Freshwater Ciliates (Spirotrichea:Ciliophora) from Delhi, India

      Abraham, JS; Sripoorna, S; Choudhary, A; Toteja, R; Gupta, R; Makhija, S; Warren, A (2017-12-14)