• A Horizon Scan of research priorities to inform policies aimed at reducing the harm of plastic pollution to biota

      Provencher, JF; Liboiron, M; Borrelle, SB; Bond, AL; Rochman, C; Lavers, JL; Avery-Gomm, S; Yamashita, R; Ryan, PG; Lusher, AL; et al. (Elsevier, 2020-09-01)
      Plastic pollution in the oceans is a priority environmental issue. The recent increase in research on the topic, coupled with growing public awareness, has catalyzed policymakers around the world to identify and implement solutions that minimize the harm caused by plastic pollution. To aid and coordinate these efforts, we surveyed experts with scientific experience identified through their peer-reviewed publications. We asked experts about the most pressing research questions relating to how biota interact with plastic pollution that in turn can inform policy decisions and research agendas to best contribute to understanding and reducing the harm of plastic pollution to biota. We used a modified Horizon Scan method that first used a subgroup of experts to generate 46 research questions on aquatic biota and plastics, and then conducted an online survey of researchers globally to prioritize questions in terms of their importance to inform policy development. One hundred and fifteen experts from 29 countries ranked research questions in six themes. The questions were ranked by urgency, indicating which research should be addressed immediately, which can be addressed later, and which are of limited relevance to inform action on plastics as an environmental pollutant. We found that questions relating to the following four themes were the most commonly top-ranked research priorities: (i) sources, circulation and distribution of plastics, (ii) type of harm from plastics, (iii) detection of ingested plastics and the associated problems, and (iv) related economies and policy to ingested plastics. While there are many research questions on the topic of impacts of plastic pollution on biota that could be funded and investigated, our results focus collective priorities in terms of research that experts believe will inform effective policy and on-the-ground conservation.
    • Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain

      Roy, HE; Peyton, J; Aldridge, DC; Bantock, T; Blackburn, TM; Britton, R; Clark, P; Cook, E; Dehnen-Schmutz, K; Dines, T; et al. (Wiley, 2014-05-19)
    • The hosts of Ophion luteus (Linnaeus) (Hymenoptera, Ichneumonidae, Ophioninae) in Europe

      Broad, G; Schnee, H; Shaw, MR (2015-11-30)
      A widespread European nocturnal ichneumonid, Ophion luteus, is shown to be a parasitoid of at least two species of noctuid moth, Agrotis exclamationis and A. segetum, probably most frequently a parasitoid of the former. The taxonomy, nomenclature and diagnostic features of this species are discussed. Possible explanations for a spring-flying generation, usually referred to as the ‘distans’ morph, are discussed.
    • How climatic variability is linked to the spatial distribution of range sizes: seasonality versus climate change velocity in sphingid moths

      Grünig, M; Beerli, N; Ballesteros-Mejia, L; Kitching, I; Beck, J (Wiley, 2017-07-04)
      Aim To map the spatial variation of range sizes within sphingid moths, and to test hypotheses on its environmental control. In particular, we investigate effects of climate change velocity since the Pleistocene and the mid‐Holocene, temperature and precipitation seasonality, topography, Pleistocene ice cover, and available land area. Location Old World and Australasia, excluding smaller islands. Methods We used fine‐grained range maps (based on expert‐edited distribution modelling) for all 972 sphingid moth species in the research region and calculated, at a grain size of 100 km, the median of range sizes of all species that co‐occur in a pixel. Climate, topography and Pleistocene ice cover data were taken from publicly available sources. We calculated climate change velocities (CCV) for the last 21 kyr as well as 6 kyr. We compared the effects of seasonality and CCV on median range sizes with spatially explicit models while accounting for effects of elevation range, glaciation history and available land area. Results Range sizes show a clear spatial pattern, with highest median values in deserts and arctic regions and lowest values in isolated tropical regions. Range sizes were only weakly related to absolute latitude (predicted by Rapoport's effect), but there was a strong north‐south pattern of range size decline. Temperature seasonality emerged as the strongest environmental correlate of median range size, in univariate as well as multivariate models, whereas effects of CCV were weak and unstable for both time periods. These results were robust to variations in the parameters in alternative analyses, among them multivariate CCV. Main conclusions Temperature seasonality is a strong correlate of spatial range size variation, while effects of longer‐term temperature change, as captured by CCV, received much weaker support.
    • How climatic variability is linked to the spatial distribution of range sizes: seasonality versus climate change velocity in sphingid moths

      Grünig, Marc; Beerli, Nicolas; Ballesteros-Mejia, Liliana; Kitching, I; Beck, Jan (Wiley, 2017-11)
      Aim: To map the spatial variation of range sizes within sphingid moths, and to test hypotheses on its environmental control. In particular, we investigate effects of climate change velocity since the Pleistocene and the mid-Holocene, temperature and precipitation seasonality, topography, Pleistocene ice cover, and available land area. Location: Old World and Australasia, excluding smaller islands. Methods: We used fine-grained range maps (based on expert-edited distribution modelling) for all 972 sphingid moth species in the research region and calculated, at a grain size of 100 km, the median of range sizes of all species that co-occur in a pixel. Climate, topography and Pleistocene ice cover data were taken from publicly available sources. We calculated climate change velocities (CCV) for the last 21ky as well as 6ky. We compared the effects of seasonality and CCV on median range sizes with spatially explicit models while accounting for effects of elevation range, glaciation history and available land area. Results: Range sizes show a clear spatial pattern, with highest median values in deserts and arctic regions and lowest values in isolated tropical regions. Range sizes were only weakly related to absolute latitude (predicted by Rapoport’s effect), but there was a strong north-south pattern of range size decline. Temperature seasonality emerged as the strongest environmental correlate of median range size, in univariate as well as multivariate models, whereas effects of CCV were weak and unstable for both time periods. These results were robust to variations in the parameters in alternative analyses, among them multivariate CCV. Main conclusions: Temperature seasonality is a strong correlate of spatial range size variation, while effects of longer-term temperature change, as captured by CCV, received much weaker support.
    • How common is albinism really? Colour aberrations in Indian birds reviewed

      Van Grouw, H; Mahabal, A; Sharma, RM; Thakur, S (2016-09-01)
    • How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths

      Beerli, Nicolas; Bärtschi, Florian; Ballesteros‐Mejia, Liliana; Kitching, I; Beck, Jan (Wiley, 2019-08)
      Aim: We mapped the geographical pattern of body sizes in sphingid moths and investigated latitudinal clines. We tested hypotheses concerning their possible environmental control, that is, effects of temperature (negative: temperature size rule or Bergmann's rule; positive: converse Bergmann rule), food availability, robustness to starvation during extreme weather and seasonality. Location: Old World and Australia/Pacific region. Methods: Body size data of 950 sphingid species were compiled and related to their distribution maps. Focusing on body length, we mapped the median and maximum size of all species occurring in 100 km grid cells. In a comparative approach, we tested the predictions from explanatory hypotheses by correlating species' size to the average environmental conditions encountered throughout their range, under univariate and multivariate models. We accounted for phylogeny by stepwise inclusion of phylogenetically informed taxonomic classifications into hierarchical random‐intercept mixed models. Results: Median body sizes showed a distinctive geographical pattern, with large species in the Middle East and the Asian tropics, and smaller species in temperate regions and the Afrotropics. Absolute latitude explained very little body size variation, but there was a latitudinal cline of maximum size. Species' median size was correlated with net primary productivity, supporting the food availability hypothesis, whereas support for other hypotheses was weak. Environmental correlations contributed much less (i.e. <10%) to explaining overall size variation than phylogeny (inclusion of which led to models explaining >70% of variability). Main conclusion: The intuitive impression of larger species in the tropics is shaped by larger size maxima. Median body sizes are only very weakly related to latitude. Most of the geographical variation in body size in sphingid moths is explained by their phylogenetic past. NPP and forest cover correlate positively with the body size, which supports the idea that food availability allowed the evolution of larger sizes.
    • How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths.

      Beerli, N; Bärtschi, F; Kitching, IJ; Ballesteros-Mejia, L; Beck, J (Wiley, 2019-05-14)
      Aim: We mapped the geographical pattern of body sizes in sphingid moths and investigated latitudinal clines. We tested hypotheses concerning their possible environmental control, that is, effects of temperature (negative: temperature size rule or Bergmann's rule; positive: converse Bergmann rule), food availability, robustness to starvation during extreme weather and seasonality. Location: Old World and Australia/Pacific region. Methods: Body size data of 950 sphingid species were compiled and related to their distribution maps. Focusing on body length, we mapped the median and maximum size of all species occurring in 100 km grid cells. In a comparative approach, we tested the predictions from explanatory hypotheses by correlating species' size to the average environmental conditions encountered throughout their range, under univariate and multivariate models. We accounted for phylogeny by stepwise inclusion of phylogenetically informed taxonomic classifications into hierarchical random‐intercept mixed models. Results: Median body sizes showed a distinctive geographical pattern, with large species in the Middle East and the Asian tropics, and smaller species in temperate regions and the Afrotropics. Absolute latitude explained very little body size variation, but there was a latitudinal cline of maximum size. Species' median size was correlated with net primary productivity, supporting the food availability hypothesis, whereas support for other hypotheses was weak. Environmental correlations contributed much less (i.e. <10%) to explaining overall size variation than phylogeny (inclusion of which led to models explaining >70% of variability). Main conclusion: The intuitive impression of larger species in the tropics is shaped by larger size maxima. Median body sizes are only very weakly related to latitude. Most of the geographical variation in body size in sphingid moths is explained by their phylogenetic past. NPP and forest cover correlate positively with the body size, which supports the idea that food availability allowed the evolution of larger sizes.
    • How the temperate world was colonised by bindweeds: biogeography of the Convolvuleae (Convolvulaceae)

      Mitchell, TC; Williams, BRM; Wood, JRI; Harris, DJ; Scotland, RW; Carine, MA (2016-12)
    • Hybrid capture data unravel a rapid radiation of pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes)

      Klopfstein, S; Langille, B; Spasojevic, T; Broad, G; Cooper, SJB; Austin, AD; Niehuis, O (Wiley, 2018-10-31)
      The parasitoid wasp family Ichneumonidae is among the most diverse groups of organisms, with conservative estimates suggesting that it contains more species than all vertebrates together. However, ichneumonids are also among the most severely understudied groups, and our understanding of their evolution is hampered by the lack of a robust higher‐level phylogeny of this group. Based on newly generated transcriptome sequence data, which were filtered according to several criteria of phylogenetic informativeness, we developed target DNA enrichment baits to capture 93 genes across species of Ichneumonidae. The baits were applied to DNA of 55 ichneumonids, with a focus on Pimpliformes, an informal group containing nine subfamilies. Phylogenetic trees were inferred under maximum likelihood and Bayesian approaches, at both the nucleotide and amino acid levels. We found maximum support for the monophyly of Pimpliformes but low resolution and very short branches close to its base, strongly suggesting a rapid radiation. Two genera and one genus‐group were consistently recovered in unexpected parts of the tree, prompting changes in their higher‐level classification: Pseudorhyssa Merrill, currently classified in the subfamily Poemeniinae, is transferred to the tribe Delomeristini within Pimplinae, and Hemiphanes Förster is moved from Orthocentrinae to Cryptinae. Likewise, the tribe Theroniini is resurrected for the Theronia group of genera (stat. rev.). Phylogenetic analyses, in which we gradually increased the numbers of genes, revealed that the initially steep increase in mean clade support slows down at around 40 genes, and consideration of up to 93 genes still left various nodes in the inferred phylogenetic tree poorly resolved. It remains to be shown whether more extensive gene or taxon sampling can resolve the early evolution of the pimpliform subfamilies.
    • iCollections

      Paterson, GLJ; Albuquerque, S; Blagoderov, V; Brooks, S; Cafferty, S; Cane, E; Carter, V; Chainey, J; Crowther, R; Douglas, L; et al. (2016-06-03)
      iCollections specimens
    • iCollections methodology: workflow, results and lessons learned

      Blagoderov, V; Penn, M; Sadka, M; Hine, A; Brooks, S; Siebert, D; Sleep, C; Cafferty, S; Cane, E; Martin, G; et al. (2017-09-25)
    • iCollections methodology: workflow, results and lessons learned

      Blagoderov, V; Penn, M; Sadka, M; Hine, A; Brooks, S; Siebert, D; Sleep, C; Cafferty, S; Cane, E; Martin, G; et al. (2017-09-28)
    • iCollections methodology: workflow, results and lessons learned

      Blagoderov, Vladimir; Penn, MG; Sadka, Mike; Hine, Adrian; Brooks, Stephen; Siebert, Darrell; Sleep, Chris; Cafferty, Steve; Cane, Elisa; Martin, Geoff; et al. (Pensoft Publishers, 2017-09-25)
      The Natural History Museum, London (NHMUK) has embarked on an ambitious programme to digitise its collections. The first phase of this programme was to undertake a series of pilot projects to develop the workflows and infrastructure needed to support mass digitisation of very large scientific collections. This paper presents the results of one of the pilot projects – iCollections. This project digitised all the lepidopteran specimens usually considered as butterflies, 181,545 specimens representing 89 species from the British Isles and Ireland. The data digitised includes, species name, georeferenced location, collector and collection date - the what, where, who and when of specimen data. In addition, a digital image of each specimen was taken. A previous paper explained the way the data were obtained and the background to the collections that made up the project. The present paper describes the technical, logistical, and economic aspects of managing the project.
    • iCollections – Digitising the British and Irish Butterflies in the Natural History Museum, London

      Paterson, G; Albuquerque, S; Blagoderov, V; Brooks, S; Cafferty, S; Cane, E; Carter, V; Chainey, J; Crowther, R; Douglas, L; et al. (2016-09-13)
    • Idalatry

      JENNER, RA (2009)
    • Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma

      Lloyd, RE; Keatley, K; Littlewood, T; Meunier, B; Holt, WV; An, Q; Higgins, SC; Polyzoidis, S; Stephenson, KF; Ashkan, K; et al. (Oxford University Press (OUP), 2015-07-01)
      Background: Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods: The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results: Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions: We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches.
    • Identification and lectotypification of the Solanaceae from Vellozo's Flora Fluminensis

      Knapp, S; Barboza, GE; Romero, MV; Vignoli-Silva, M; Giacomin, LL; Stehmann, JR (2015-08-28)