• Various Gallus varius hybrids: variation in junglefowl hybrids and Darwin's interest in them

      van Grouw, Hein; Dekkers, W (British Ornithologists' Club, 2019-12-16)
      Hybrids between Green Junglefowl Gallus varius and domestic fowl G. gallus domesticus confused several 19th-century ornithologists. The plumage of these hybrids is so unlike the colours and patterns of either of the parent species that they were considered to be distinct species: G. aeneusTemminck, 1825; G. temminckiiGray, 1849; and G. violaceusKelsall, 1891. Darwin wanted to understand if G. aeneus and G. temminckii were hybrids or species, as part of his research on the origin of the domestic chicken. His view was that all domesticated fowl have a single wild ancestor, Red Junglefowl G. gallus (formerly G. bankiva). A hybrid specimen now present in the bird collection of the Natural History Museum at Tring played an important role in Darwin's reasoning and, although the conclusions he drew from this specimen were incorrect, his single-ancestor origin theory for domesticated fowl stands. ‘These hybrids were at one time thought to be specifically distinct, and were named G. aeneus. Mr. Blyth and others believe that the G. Temminckii is a similar hybrid' (Darwin 1868a: 234–235).
    • The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda)

      Golikov, A; Ceia, F; Sabirov, R; Ablett, J; Gleadall, I; Gudmundsson, G; Hoving, H; Heather, J; Pálsson, J; Reid, AL; et al. (Nature Publishing Group, 2019-12-13)
      Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.
    • Darwin wasps: a new name heralds renewed efforts to unravel the evolutionary history of Ichneumonidae

      Klopfstein, S; Santos, BF; Shaw, MR; Alvarado, M; Bennett, AMR; Dal Pos, D; Giannotta, M; Herrera Florez, AF; Karlsson, D; Khalaim, AI; et al. (Sociedade Entomológica do Brasil, 2019-12-08)
      The parasitoid wasp family Ichneumonidae is arguably one of the groups for which current knowledge lags most strongly behind their enormous diversity. In a five-day meeting in Basel (Switzerland) in June 2019, 22 researchers from 14 countries met to discuss the most important issues in ichneumonid research, including increasing the speed of species discovery, resolving higher-level relationships, and studying the radiation of these parasitoids onto various host groups through time. All agreed that it is time to advertise ichneumonid research more broadly and thereby attract young talents to this group for which specialists are sorely lacking, as well as increase public awareness about their exciting biology and ecological impact. In order to popularize the group, we here suggest a new vernacular name for the family, “Darwin wasps”, to reflect the pivotal role they played in convincing Charles Darwin that not all of creation could have been created by a benevolent god. We hope that the name catches on, and that Darwin wasps start buzzing more loudly across all disciplines of biology.
    • Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises (Cylindraspis spp.)

      Kehlmaier, C; Graciá, E; Campbell, P; Hofmeyr, MD; SCHWEIGER, S; Martínez-Silvestre, A; Joyce, W; Fritz, U (Springer Science and Business Media LLC, 2019-11-25)
      The five extinct giant tortoises of the genus Cylindraspis belong to the most iconic species of the enigmatic fauna of the Mascarene Islands that went largely extinct after the discovery of the islands. To resolve the phylogeny and biogeography of Cylindraspis, we analysed a data set of 45 mitogenomes that includes all lineages of extant tortoises and eight near-complete sequences of all Mascarene species extracted from historic and subfossil material. Cylindraspis is an ancient lineage that diverged as early as the late Eocene. Diversification of Cylindraspis commenced in the mid-Oligocene, long before the formation of the Mascarene Islands. This rejects any notion suggesting that the group either arrived from nearby or distant continents over the course of the last millions of years or had even been translocated to the islands by humans. Instead, Cylindraspis likely originated on now submerged islands of the Réunion Hotspot and utilized these to island hop to reach the Mascarenes. The final diversification took place both before and after the arrival on the Mascarenes. With Cylindraspis a deeply divergent clade of tortoises became extinct that evolved long before the dodo or the Rodrigues solitaire, two other charismatic species of the lost Mascarene fauna.
    • Cranial anatomy and taxonomy of the erythrosuchid archosauriform ‘Vjushkovia triplicostata’ Huene, 1960, from the Early Triassic of European Russia

      Butler, RJ; Sennikov, AG; Dunne, EM; Ezcurra, MD; Hedrick, BP; Maidment, Susannah; Meade, LE; Raven, TJ; Gower, DJ (The Royal Society, 2019-11-20)
      Erythrosuchidae are a globally distributed and important group of apex predators that occupied Early and Middle Triassic terrestrial ecosystems following the Permo-Triassic mass extinction. The stratigraphically oldest known genus of Erythrosuchidae is Garjainia Ochev, 1958, which is known from the late Early Triassic (late Olenekian) of European Russia and South Africa. Two species of Garjainia have been reported from Russia: the type species, Garjainia prima Ochev, 1958, and ‘Vjushkovia triplicostata’ von Huene, 1960, which has been referred to Garjainia as either congeneric (Garjainiatriplicostata) or conspecific (G. prima). The holotype of G. prima has received relatively extensive study, but little work has been conducted on type or referred material attributed to ‘V. triplicostata’. However, this material includes well-preserved fossils representing all parts of the skeleton and comprises seven individuals. Here, we provide a comprehensive description and review of the cranial anatomy of material attributed to ‘V. triplicostata’, and draw comparisons with G. prima. We conclude that the two Russian taxa are indeed conspecific, and that minor differences between them result from a combination of preservation or intraspecific variation. Our reassessment therefore provides additional information on the cranial anatomy of G. prima. Moreover, we quantify relative head size in erythrosuchids and other early archosauromorphs in an explicit phylogenetic context for the first time. Our results show that erythrosuchids do indeed appear to have disproportionately large skulls, but that this is also true for other early archosauriforms (i.e. proterosuchids), and may reflect the invasion of hypercarnivorous niches by these groups following the Permo-Triassic extinction.
    • Entrapment in plastic debris endangers hermit crabs

      Lavers, JL; Sharp, PB; Stuckenbrock, S; Bond, AL (Elsevier BV, 2019-11-16)
      Significant quantities of plastic debris pollute nearly all the world’s ecosystems, where it persists for decades and poses a considerable threat to flora and fauna. Much of the focus has been on the marine environment, with little information on the hazard posed by debris accumulating on beaches and adjacent vegetated areas. Here we investigate the potential for beach debris to disrupt terrestrial species and ecosystems on two remote islands. The significant quantities of debris on the beaches, and throughout the coastal vegetation, create a significant barrier which strawberry hermit crabs (Coenobita perlatus) encounter during their daily activities. Around 61,000 (2.447 crabs/m2) and 508,000 crabs (1.117 crabs/m2) are estimated to become entrapped in debris and die each year on Henderson Island and the Cocos (Keeling) Islands, respectively. Globally, there is an urgent need to establish a clear link between debris interactions and population persistence, as loss of biodiversity contributes to ecosystem degradation. Our findings show accumulating debris on these islands has the potential to seriously impact hermit crab populations. This is important for countless other islands worldwide where crabs and debris overlap, as crabs play a crucial role in the maintenance of tropical ecosystems.
    • Training needs and recommendations for Citizen Science participants, facilitators and designers

      Lorke, Julia; Golumbic, YN; Ramjan, C; Atias, O (COST Action 15212, 2019-11-15)
      In this report, we aimed to systematise and elaborate on the ideas discussed during the COST Action WG2 workshop “Systematic review on training requirements and recommendations for Citizen Science” that took place in Riga on 12-13th November 2018. Building on the input from the workshop participants’ broad range of different perspectives and expertise in citizen science and education, we compiled a list of training needs for project participants, project facilitators and project designers in citizen science and categorised them into core, operational and engagement needs. Based on our experience we discussed challenges that may need to be considered when designing training in citizen science. We then addressed the needs by formulating recommendations and pointing out available resources that have been proven to be useful in our own citizen science research and practice. While we acknowledge that these training needs and training recommendations may not be complete, we believe that our approach from needs to recommendations can act as a helpful working model when designing training and the list of resources provides a starting point to delve deeper into the topic and good training examples to build on. We invite the community to provide further insights into training needs and recommendations and to contribute further resources to the list
    • The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution

      Schendel; Rash; Jenner; Undheim (MDPI AG, 2019-11-14)
      Venoms are one of the most convergent of animal traits known, and encompass a much greater taxonomic and functional diversity than is commonly appreciated. This knowledge gap limits the potential of venom as a model trait in evolutionary biology. Here, we summarize the taxonomic and functional diversity of animal venoms and relate this to what is known about venom system morphology, venom modulation, and venom pharmacology, with the aim of drawing attention to the importance of these largely neglected aspects of venom research. We find that animals have evolved venoms at least 101 independent times and that venoms play at least 11 distinct ecological roles in addition to predation, defense, and feeding. Comparisons of different venom systems suggest that morphology strongly influences how venoms achieve these functions, and hence is an important consideration for understanding the molecular evolution of venoms and their toxins. Our findings also highlight the need for more holistic studies of venom systems and the toxins they contain. Greater knowledge of behavior, morphology, and ecologically relevant toxin pharmacology will improve our understanding of the evolution of venoms and their toxins, and likely facilitate exploration of their potential as sources of molecular tools and therapeutic and agrochemical lead compounds.
    • A global catalog of primary reptile type specimens

      Campbell, P; Uetz, P; CHERIKH, SAMI; Shea, G; Ineich, I; Doronin, I; ROSADO, J; WYNN, A; TIGHE, KA; MCDIARMID, R; et al. (Magnolia Press, 2019-11-12)
      We present information on primary type specimens for 13,282 species and subspecies of reptiles compiled in the Reptile Database, that is, holotypes, neotypes, lectotypes, and syntypes. These represent 99.4% of all 13,361 currently recognized taxa (11,050 species and 2311 subspecies). Type specimens of 653 taxa (4.9%) are either lost or not located, were never designated, or we did not find any information about them. 51 species are based on iconotypes. To map all types to physical GLOBAL TYPE CATALOG OF REPTILES Zootaxa 4695 (5) © 2019 Magnolia Press · 439collections we have consolidated all synonymous and ambiguous collection acronyms into an unambiguous list of 364 collections holding these primary types. The 10 largest collections possess more than 50% of all (primary) reptile types, the 36 largest collections possess more than 10,000 types and the largest 73 collections possess over 90% of all types. Of the 364 collections, 107 hold type specimens of only 1 species or subspecies. Dozens of types are still in private collections. In order to increase their utility, we recommend that the description of type specimens be supplemented with data from high-resolution images and CT-scans, and clear links to tissue samples and DNA sequence data (when available). We request members of the herpetological community provide us with any missing type information to complete the list.
    • Who are you, Griselda? A replacement name for a new genus of the Asiatic short-tailed shrews (Mammalia, Eulipotyphla, Soricidae): molecular and morphological analyses with the discussion of tribal affinities

      Bannikova, AA; Jenkins, Paulina; Solovyeva, EN; Pavlova, SV; Demidova, TB; Simanovsky, SA; Sheftel, BI; Lebedev, VS; Fang, Y; Dalen, L; et al. (Pensoft Publishers, 2019-11-11)
      The first genetic study of the holotype of the Gansu short-tailed shrew, Blarinella griselda Thomas, 1912, is presented. The mitochondrial analysis demonstrated that the type specimen of B. griselda is close to several recently collected specimens from southern Gansu, northern Sichuan and Shaanxi, which are highly distinct from the two species of Asiatic short-tailed shrews of southern Sichuan, Yunnan, and Vietnam, B. quadraticauda and B. wardi. Our analysis of four nuclear genes supported the placement of B. griselda as sister to B. quadraticauda / B. wardi, with the level of divergence between these two clades corresponding to that among genera of Soricinae. A new generic name, Parablarinella, is proposed for the Gansu short-tailed shrew. Karyotypes of Parablarinella griselda (2n = 49, NFa = 50) and B. quadraticauda (2n = 49, NFa = 62) from southern Gansu are described. The tribal affinities of Blarinellini and Blarinini are discussed.
    • Geographic range extension of Speke's Hinge-back Tortoise Kinixys spekii Gray, 1863

      Ihlow, F; Farooq, H; Qvozdik, V; Hofmeyr, M; Conradie, W; Harvey, J; Campbell, P; Verburgt, L; Fritz, U (Amphibian and Reptile Conservation, 2019-11-06)
      Kinixys spekii has a wide distribution range across sub-Saharan Africa, having been reported from Angola, Botswana, Burundi, the Democratic Republic of the Congo, eSwatini, Kenya, Malawi, Mozambique, Namibia, South Africa, Tanzania, Zambia, and Zimbabwe. Kinixys spekii inhabits savannah and dry bushveld habitats and was previously considered an inland species. However, recent records suggest a more extensive geographical distribution. Here, we provide genetically verifed records for Angola, South Africa, and Mozambique, and discuss reliable sightings for Rwanda. These new records extend the range signifcantly to the east and west, and provide evidence for the occurrence of this species along the coast of the Indian Ocean in South Africa and Mozambique.
    • What’s the catch with lumpsuckers? A North Atlantic study of seabird bycatch in lumpsucker gillnet fisheries

      Christensen-Dalsgaard, S; Anker-Nilssen, T; Crawford, R; Bond, AL; Sigurðsson, GM; Glemarec, G; Hansen, ES; Kadin, M; Kindt-Larsen, L; Mallory, M; et al. (Elsevier BV, 2019-11-06)
      Worldwide, incidental bycatch in fisheries is a conservation threat to many seabird species. Although knowledge on bycatch of seabirds has increased in the last decade, most stems from longline fisheries and the impacts of coastal gillnet fisheries are poorly understood. Gillnet fishing for North Atlantic lumpsucker (Cyclopterus lumpus) is one such fishery. We collated and synthesized the available information on seabird bycatch in lumpsucker gillnet fisheries across the entire geographical range to estimate and infer the magnitude of their impact on the affected seabird populations. Most birds killed were diving ducks, cormorants and auks, and each year locally high numbers of seabirds were taken as bycatch. We found large differences in bycatch rates among countries. The estimated mean bycatch in Iceland was 2.43 birds/trip, while the estimates in Norway was 0.44 and 0.39 birds/trip, respectively. The large disparities between estimates might reflect large spatial differences in bycatch rates, but could partly also arise due to distinctions in data recorded by onboard inspectors (Iceland), self-administered registration (Norway) and direct observations by cameras (Denmark). We show that lumpsucker gillnet fisheries might pose a significant risk to some populations of diving seabirds. However, a distinct data deficiency on seabird bycatch in terms of spatio-temporal coverage and the age and origins of the birds killed, limited our abilities to fully assess the extent and population consequences of the bycatch. Our results highlight the need for a joint effort among countries to standardize monitoring methods to better document the impact of these fisheries on seabirds.
    • Notes on the sinistral helicoid snail Bertia cambojiensis (Reeve, 1860) from Vietnam (Eupulmonata, Dyakiidae)

      Sutcharit, C; Naggs, F; Ablett, J; Sang, PV; Hao, LV; Panha, S (Pensoft Publishers, 2019-11-04)
      Since the time of the original description there have been no precise locality records in Cambodia of Bertia cambojiensis (Reeve, 1860) and it was believed to be extinct. In 2012, a joint Natural History Museum survey with Vietnamese colleagues rediscovered living populations of this huge sinistral helicoid snail in a protected area of southern Vietnam. The genitalia and radula morphology are re-assessed and type specimens of all recognised congeners are figured herein. The unique morphological characters of this species are a small and simple penis, well-developed amatorial organ complex that incorporates four amatorial organ ducts, a short gametolytic organ complex and spiked papilla, and radula morphology with unicuspid teeth. The type locality of B. cambojiensis, which has been contentious, is determined here to be in the vicinity of ‘Brelum’, Vietnam, near the border with Cambodia. In addition, the nucleotide sequences of barcoding genes COI, 16SrRNA and 28S fragments were provided for further comparison.
    • Straight-washing ecological legacies

      Mackay, AW; Adger, D; Bond, AL; Giles, S; Ochu, E (Springer Science and Business Media LLC, 2019-11-04)
      Scientists are human, and scientists are diverse. But this diversity is nothing unless people can be themselves while practising science. This should extend to acknowledging ‘hidden’ diversities of the scientists that changed our understanding of the world. This is important not only for historical accuracy but also because it provides role models for today’s diverse scientific communities.
    • Estimating crime scene temperatures from nearby meteorological station data

      Hofer, IMJ; Hart, AJ; Martín-Vega, D; Hall, MJR (Elsevier BV, 2019-10-30)
      The importance of temperature data in minimum postmortem interval (minPMI) estimations in criminal investigations is well known. To maximise the accuracy of minPMI estimations, it is imperative to investigate the different components involved in temperature modelling, such as the duration of temperature data logger placement at the crime scene and choice of nearest weather station to compare the crime scene data to. Currently, there is no standardised practice on how long to leave the temperature data logger at the crime scene and the effects of varying logger duration are little known. The choice of the nearest weather station is usually made based on availability and accessibility of data from weather stations in the crime scene vicinity. However, there are no guidelines on what to look for to maximise the comparability of weather station and crime scene temperatures. Linear regression analysis of scene data with data from weather stations with varying time intervals, distances, altitudes and microclimates showed the greatest goodness of fit (R2), i.e. the highest compatibility between datasets, after 4–10 days. However, there was no significant improvement in estimation of crime scene temperatures beyond a 5-day regression period. The smaller the distance between scene and weather station and the higher the similarity in environment, such as altitude and geographical area, resulted in greater compatibility between datasets. Overall, the study demonstrated the complexity of choosing the most comparable weather station to the crime scene, especially because of a high variation in seasonal temperature and numerous influencing factors such as geographical location, urban ‘heat island effect’ and microclimates. Despite subtle differences, for both urban and rural areas an optimal data fit was generally reached after about five consecutive days within a radius of up to 30 km of the ‘crime scene’. With increasing distance and differing altitudes, a lower overall data fit was observed, and a diminishing increase in R2 values was reached after 4–10 consecutive days. These results demonstrate the need for caution regarding distances and climate differences when using weather station data for retrospective regression analyses for estimating temperatures at crime scenes. However, the estimates of scene temperatures from regression analysis were better than simply using the temperatures from the nearest weather station. This study provides recommendations for data logging duration of operation, and a baseline for further research into producing standard guidelines for increasing the accuracy of minPMI estimations and, ultimately, greater robustness of forensic entomology evidence in court.
    • Moths: Their biology, diversity and evolution

      Lees, David; Zilli, Alberto (Natural History Museum, LondonLondon, 2019-10-29)
      Moths is an accessible introduction to the stunning diversity, life habits and evolution of moths. This iconic insect group encompasses 128 of the 135 families of the scaly winged insects (Lepidoptera), with some 140,000 known species. Moths are among the most successful of the Earth’s inhabitants, with an ancient history, some fossils being dated to 190 million years old. This book traces the structure and development of these winged insects and reveals some of their extraordinary adaptations, such as caterpillars that communicate with ants, as well as their ruthless survival tactics – including blood-sucking, feeding on the tears of sleeping birds, and cannibalism of their own mothers. It also exposes their essential roles in ecosystems and manifold interactions with humans. Often considered denizens of the night, hopelessly allured by lamps and mean to fabrics, the book shines a spotlight on moths, illuminating the bright side of their astonishing diversity.
    • The utility of micro-computed tomography for the non-destructive study of eye microstructure in snails

      Sumner-Rooney, L; Kenny, Nathan; Ahmed, F; Williams, ST (Springer Science and Business Media LLC, 2019-10-28)
      Molluscan eyes exhibit an enormous range of morphological variation, ranging from tiny pigment-cup eyes in limpets, compound eyes in ark clams and pinhole eyes in Nautilus, through to concave mirror eyes in scallops and the large camera-type eyes of the more derived cephalopods. Here we assess the potential of non-destructive micro-computed tomography (µ-CT) for investigating the anatomy of molluscan eyes in three species of the family Solariellidae, a group of small, deep-sea gastropods. We compare our results directly with those from traditional histological methods applied to the same specimens, and show not only that eye microstructure can be visualised in sufficient detail for meaningful comparison even in very small animals, but also that μ-CT can provide additional insight into gross neuroanatomy without damaging rare and precious specimens. Data from μ-CT scans also show that neurological innervation of eyes is reduced in dark-adapted snails when compared with the innervation of cephalic tentacles, which are involved in mechanoreception and possibly chemoreception. Molecular tests also show that the use of µ-CT and phosphotungstic acid stain do not prevent successful downstream DNA extraction, PCR amplification or sequencing. The use of µ-CT methods is therefore highly recommended for the investigation of difficult-to-collect or unique specimens.
    • Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission

      Wood, CL; Sokolow, SH; Jones, IJ; Chamberlin, AJ; Lafferty, KD; Kuris, AM; Jocque, M; Hopkins, S; Adams, G; Buck, JC; et al. (Proceedings of the National Academy of Sciences, 2019-10-28)
      Recently, the World Health Organization recognized that efforts to interrupt schistosomiasis transmission through mass drug administration have been ineffective in some regions; one of their new recommended strategies for global schistosomiasis control emphasizes targeting the freshwater snails that transmit schistosome parasites. We sought to identify robust indicators that would enable precision targeting of these snails. At the site of the world’s largest recorded schistosomiasis epidemic—the Lower Senegal River Basin in Senegal—intensive sampling revealed positive relationships between intermediate host snails (abundance, density, and prevalence) and human urogenital schistosomiasis reinfection (prevalence and intensity in schoolchildren after drug administration). However, we also found that snail distributions were so patchy in space and time that obtaining useful data required effort that exceeds what is feasible in standard monitoring and control campaigns. Instead, we identified several environmental proxies that were more effective than snail variables for predicting human infection: the area covered by suitable snail habitat (i.e., floating, nonemergent vegetation), the percent cover by suitable snail habitat, and size of the water contact area. Unlike snail surveys, which require hundreds of person-hours per site to conduct, habitat coverage and site area can be quickly estimated with drone or satellite imagery. This, in turn, makes possible large-scale, high-resolution estimation of human urogenital schistosomiasis risk to support targeting of both mass drug administration and snail control efforts.
    • Abyssal fauna of polymetallic nodule exploration areas, eastern Clarion-Clipperton Zone, central Pacific Ocean: Annelida: Capitellidae, Opheliidae, Scalibregmatidae, and Travisiidae

      Wiklund, H; Neal, L; Glover, AG; Drennan, Regan; Rabone, M; Dahlgren, TG (Pensoft Publishers, 2019-10-28)
      We present DNA taxonomy of abyssal polychaete worms from the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruises ‘AB01’ and ‘AB02’ to the UK Seabed Resources Ltd (UKSRL) polymetallic nodule exploration contract area ‘UK-1’, the Ocean Mineral Singapore exploration contract area ‘OMS-1’ and an Area of Particular Environmental Interest, ‘APEI-6’. This is the fourth paper in a series to provide regional taxonomic data with previous papers reporting on Cnidaria, Echinodermata and Mollusca. Taxonomic data are presented for 23 species from 85 records within four polychaete families: Capitellidae, Opheliidae, Scalibregmatidae and Travisiidae, identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. Two taxa (genetically separated from one another) morphologically matched the same known cosmopolitan species, Ophelina abranchiata that has a type locality in a different ocean basin and depth from where no genetic data was available. These two species were assigned the open nomenclature ‘cf.’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. Twelve (12) taxa are here described as new species, Ammotrypanella keenani sp. nov., Ammotrypanella kersteni sp. nov., Ophelina curli sp. nov., Ophelina ganae sp. nov., Ophelina juhazi sp. nov., Ophelina martinezarbizui sp. nov., Ophelina meyerae sp. nov., Ophelina nunnallyi sp. nov., Oligobregma brasierae sp. nov., Oligobregma tani sp. nov., Oligobregma whaleyi sp. nov. and Travisia zieglerae sp. nov. For the remaining nine taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The CCZ is a region undergoing intense exploration for potential deep-sea mineral extraction from polymetallic nodules. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.
    • Convergent evolution in toothed whale cochleae

      Park, Travis; Mennecart, B; Costeur, L; Grohé, C; Cooper, N (Springer Science and Business Media LLC, 2019-10-24)
      Background Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance. Results We identified three convergent regimes: (1) True’s (Mesoplodon mirus) and Cuvier’s (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall’s porpoise (Phocoenoides dalli). Interestingly the ‘river dolphins’, a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime. Conclusions The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.