• Checklist of British and Irish Hymenoptera - Sawflies, ‘Symphyta’

      Liston, A; Knight, G; Sheppard, D; Broad, G; Livermore, L (2014-08-29)
    • Checklist of the Helminth Parasites of South American Bats

      Santos, CP; Gibson, David I. (2015-03-26)
    • Cheilostome Bryozoen

      Martha, Silviou; Niebuhr, B; Scholz, J (2017-06-26)
      This section describes the cheilostome bryozoan fauna from the Late Cretaceous of Saxony. H.B. Geinitz and A.E. von Reuss described 33 different cheilostome species from the Upper Cenomanian and the mid-Upper Turonian of Saxony, among which 18 new species. Revisions of the Cenomanian material provided by E. Voigt showed that this material included four cyclostome species and eight species that were not derived from Saxony, but subject to a confusion of the sampling locality. Our study of the material and of material collected by E. Voigt in the 20th century yields 23 cheilostome bryozoan species for the Cretaceous of Saxony (lower Cenomanian to lower Coniacian). One new genus, Hillmeropora, and five new species, “Akatopora” wilmseni, Hillmeropora pavonina, Onychocella saxoniae, “Onychocella” barbata and Wilbertopora ostiolatoides are described. Material of six species described by Geinitz and Reuss was not found, thus their identity remaining obscure. “Eschara angustata Geinitz, 1842” is preserved as internal moulds and can therefore not be classified down to genus and species level. Furthermore, the badly preserved material of “Cellepora strehlensis”, figured by Geinitz (1846), “Eschara lineolata Reuss, 1874” and “Vincularia plauensis” sensu Reuss (1874) does not allow a proper classification.
    • The chemical basis of a signal of individual identity: shell pigment concentrations track the unique appearance of Common Murre eggs.

      Hauber, ME; Bond, AL; Kouwenberg, A-L; Robertson, GJ; Hansen, ES; Holford, M; Dainson, M; Luro, A; Dale, J (Royal Society, 2019-04-26)
      In group-living species with parental care, the accurate recognition of one's own young is critical to fitness. Because discriminating offspring within a large colonial group may be challenging, progeny of colonial breeders often display familial or individual identity signals to elicit and receive parental provisions from their own parents. For instance, the common murre (or common guillemot: Uria aalge) is a colonially breeding seabird that does not build a nest and lays and incubates an egg with an individually unique appearance. How the shell's physical and chemical properties generate this individual variability in coloration and maculation has not been studied in detail. Here, we quantified two characteristics of the avian-visible appearance of murre eggshells collected from the wild: background coloration spectra and maculation density. As predicted by the individual identity hypothesis, there was no statistical relationship between avian-perceivable shell background coloration and maculation density within the same eggs. In turn, variation in both sets of traits was statistically related to some of their physico-chemical properties, including shell thickness and concentrations of the eggshell pigments biliverdin and protoporphyrin IX. These results illustrate how individually unique eggshell appearances, suitable for identity signalling, can be generated by a small number of structural mechanisms.
    • A chemosynthetic weed: the tubeworm Sclerolinum contortum is a bipolar, cosmopolitan species

      Georgieva, MN; Wiklund, H; Bell, JB; Eilertsen, MH; Mills, RA; Little, CTS; Glover, AG (2015-12)
    • Chromoblastomycosis after a leech bite complicated by myiasis: a case report

      Slesak, G; Inthalad, S; Strobel, M; Marschal, M; Hall, MJR; Newton, PN (Springer Science and Business Media LLC, 2011-01-12)
      Background Chromoblastomycosis is a chronic mycotic infection, most common in the tropics and subtropics, following traumatic fungal implantation. Case presentation A 72 year-old farmer was admitted to Luang Namtha Provincial Hospital, northern Laos, with a growth on the left lower leg which began 1 week after a forefoot leech bite 10 years previously. He presented with a cauliflower-like mass and plaque-like lesions on his lower leg/foot and cellulitis with a purulent tender swelling of his left heel. Twenty-two Chrysomya bezziana larvae were extracted from his heel. PCR of a biopsy of a left lower leg nodule demonstrated Fonsecaea pedrosoi, monophora, or F. nubica. He was successfully treated with long term terbinafin plus itraconazole pulse-therapy and local debridement. Conclusions Chromoblastomycosis is reported for the first time from Laos. It carries the danger of bacterial and myiasis superinfection. Leech bites may facilitate infection.
    • A chromosomal analysis of Nepa cinerea Linnaeus, 1758 and Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepidae)

      Angus, RB; Jeangirard, C; Stoianova, D; Grozeva, S; Kuznetsova, VG (2017-09-14)
      An account is given of the karyotypes and male meiosis of the Water Scorpion Nepa cinerea Linnaeus, 1758 and the Water Stick Insect Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepomorpha, Nepidae). A number of different approaches and techniques were tried: the employment of both male and female gonads and mid-guts as the sources of chromosomes, squash and air-drying methods for chromosome preparations, C-banding and fluorescence in situ hybridization (FISH) for chromosome study. We found that N. cinerea had a karyotype comprising 14 pairs of autosomes and a multiple sex chromosome system, which is X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀), whereas R. linearis had a karyotype comprising 19 pairs of autosomes and a multiple sex chromosome system X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀). In both N. cinerea and R. linearis, the autosomes formed chiasmate bivalents in spermatogenesis, and the sex chromosome univalents divided during the first meiotic division and segregated during the second one suggesting thus a post-reductional type of behaviour. These results confirm and amplify those of Steopoe (1925, 1927, 1931, 1932) but are inconsistent with those of other researchers. C-banding appeared helpful in pairing up the autosomes for karyotype assembly; however in R. linearis the chromosomes were much more uniform in size and general appearance than in N. cinerea. FISH for 18S ribosomal DNA (major rDNA) revealed hybridization signals on two of the five sex chromosomes in N. cinerea. In R. linearis, rDNA location was less obvious than in N. cinerea; however it is suggested to be similar. We have detected the presence of the canonical “insect” (TTAGG)n telomeric repeat in chromosomes of these species. This is the first application of C-banding and FISH in the family Nepidae.
    • A chronological framework for the British Quaternary based on Bithynia opercula

      Penkman, KEH; Preece, RC; Bridgland, DR; Keen, DH; Meijer, T; Parfitt, SA; White, TS; Collins, MJ (Nature Research, 2011-08-25)
      Marine and ice-core records show that the Earth has experienced a succession of glacials and interglacials during the Quaternary (last ∼2.6 million years), although it is often difficult to correlate fragmentary terrestrial records with specific cycles. Aminostratigraphy is a method potentially able to link terrestrial sequences to the marine isotope stages (MIS) of the deep-sea record1,2. We have used new methods of extraction and analysis of amino acids, preserved within the calcitic opercula of the freshwater gastropod Bithynia, to provide the most comprehensive data set for the British Pleistocene based on a single dating technique. A total of 470 opercula from 74 sites spanning the entire Quaternary are ranked in order of relative age based on the extent of protein degradation, using aspartic acid/asparagine (Asx), glutamic acid/glutamine (Glx), serine (Ser), alanine (Ala) and valine (Val). This new aminostratigraphy is consistent with the stratigraphical relationships of stratotypes, sites with independent geochronology, biostratigraphy and terrace stratigraphy3,4,5,6. The method corroborates the existence of four interglacial stages between the Anglian (MIS 12) and the Holocene in the terrestrial succession. It establishes human occupation of Britain in most interglacial stages after MIS 15, but supports the notion of human absence during the Last Interglacial (MIS 5e)7. Suspicions that the treeless ‘optimum of the Upton Warren interstadial’ at Isleworth pre-dates MIS 3 are confirmed. This new aminostratigraphy provides a robust framework against which climatic, biostratigraphical and archaeological models can be tested.
    • Chrysomya putoria, a Putative Vector of Diarrheal Diseases

      Lindsay, SW; Lindsay, TC; Duprez, J; Hall, MJR; Kwambana, BA; Jawara, M; Nurudeen, IU; Sallah, N; Wyatt, N; D'Alessandro, U; et al. (Public Library of Science (PLoS), 2012-11-01)
      Background Chrysomya spp are common blowflies in Africa, Asia and parts of South America and some species can reproduce in prodigious numbers in pit latrines. Because of their strong association with human feces and their synanthropic nature, we examined whether these flies are likely to be vectors of diarrheal pathogens. Methodology/Principal Findings Flies were sampled using exit traps placed over the drop holes of latrines in Gambian villages. Odor-baited fly traps were used to determine the relative attractiveness of different breeding and feeding media. The presence of bacteria on flies was confirmed by culture and bacterial DNA identified using PCR. A median of 7.00 flies/latrine/day (IQR = 0.0–25.25) was collected, of which 95% were Chrysomya spp, and of these nearly all were Chrysomya putoria (99%). More flies were collected from traps with feces from young children (median = 3.0, IQR = 1.75–10.75) and dogs (median = 1.50, IQR = 0.0–13.25) than from herbivores (median = 0.0, IQR = 0.0–0.0; goat, horse, cow and calf; p<0.001). Flies were strongly attracted to raw meat (median = 44.5, IQR = 26.25–143.00) compared with fish (median = 0.0, IQR = 0.0–19.75, ns), cooked and uncooked rice, and mangoes (median = 0.0, IQR = 0.0–0.0; p<0.001). Escherichia coli were cultured from the surface of 21% (15/72 agar plates) of Chrysomya spp and 10% of these were enterotoxigenic. Enteroaggregative E. coli were identified by PCR in 2% of homogenized Chrysomya spp, Shigella spp in 1.4% and Salmonella spp in 0.6% of samples. Conclusions/Significance The large numbers of C. putoria that can emerge from pit latrines, the presence of enteric pathogens on flies, and their strong attraction to raw meat and fish suggests these flies may be common vectors of diarrheal diseases in Africa. Author Summary While it is well recognized that the house fly can transmit enteric pathogens, here we show the common African latrine fly, Chrysomya putoria, is likely to be an important vector of these pathogens, since an average latrine can produce 100,000 latrine flies each year. Our behavioral studies of flies in The Gambia show that latrine flies are attracted strongly to human feces, raw beef and fish, providing a clear mechanism for faecal pathogens to be transferred from faeces to food. We used PCR techniques to demonstrate that these flies are carrying Shigella, Salmonella and E. coli, all important causes of diarrhea. Moreover our culture work shows that these pathogens are viable. Latrine flies are likely to be important vectors of diarrheal disease, although further research is required to determine what proportion of infections are due to this fly.
    • Cladistics

      Kitching, I; Forey, PL; Williams, DM (Elsevier, 2017-01-01)
      Cladistics is a class of methods of biological classification that groups taxa hierarchically into discrete sets and subsets. This article presents the principles and concepts of cladistics and describes the principal analytical methods. The operations by which observations of organisms are coded for analysis are explained, followed by the methods for reconstructing the hierarchical relationships among taxa (usually expressed as branching diagrams termed cladograms). Statistics and principles for determining the degree of fit between data and cladograms are discussed, which permit choices to be made among competing cladograms.
    • Clarifying collection details of specimens from Champion Bay, Western Australia, held in the Natural History Museum, Tring

      van Grouw, Hein; Horton, Philippa; Johnstone, JE (British Ornithologists' Club, 2016-06-06)
      Six bird specimens from Champion Bay (now Geraldton), Western Australia, were purchased by the British Museum from the dealer E. T. Higgins and registered in 1867. They included the first known specimen of Painted Finch Emblema pictum to have been collected after the holotype. All six specimens are of interest because their species are either rare or otherwise unknown in the Geraldton area. Widespread drought in the 1860s probably contributed to at least some of the unusual occurrences but cannot explain them all. Possible alternative locations for the specimens’ origins are investigated. Biographical details of the probable collectors of the specimens, A. H. du Boulay and F. H. du Boulay, are explored.
    • Climate change considerations are fundamental to management of deep‐sea resource extraction

      Levin, Lisa; WEI, CHIH-LIN; Dunn, Daniel; Amon, Diva; Ashford, Oliver; Cheung, William; Colaco, Ana; Dominguez-Carrió, Carlos; Escobar Briones, Elva; Harden‐Davies, HR; et al. (Wiley, 2020-06-12)
      Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
    • Climatic oscillations in Quaternary have shaped the co‑evolutionary patterns between the Norway spruce and its host‑associated herbivore

      Jakub, G; Andrzej, O; Robert, R; Igor, C; Katarzyna, M; Radosław, P; Matti, L; Mauro, G; Gernot, H; Vytautas, T; et al. (Springer Nature, 2020-10-05)
      During the Last Glacial Maximum in the Northern Hemisphere, expanding ice sheets forced a large number of plants, including trees, to retreat from their primary distribution areas. Many host-associated herbivores migrated along with their host plants. Long-lasting geographic isolation between glacial refugia could have been led to the allopatric speciation in separated populations. Here, we have studied whether the migration history of the Norway spruce Picea abies in Quaternary has affected its host-associated herbivorous beetle—Monochamus sartor. By using microsatellite markers accompanied by the geometric morphometrics analysis of wing venation, we have revealed the clear geographic structure of M. sartor in Eurasia, encompassing two main clusters: southern (Alpine–Carpathian) and eastern (including northeastern Europe and Asia), which reflects the northern and southern ecotypes of its host. The two beetles’ lineages probably diverged during the Pleniglacial (57,000—15,000 BC) when their host tree species was undergoing significant range fragmentation and experienced secondary contact during post-glacial recolonization of spruce in the Holocene. A secondary contact of divergent lineages of M. sartor has resulted in the formation of the hybrid zone in northeastern Europe. Our findings suggest that the climatic oscillations during the Pleistocene have driven an insect-plant co-evolutionary process, and have contributed to the formation of the unique biodiversity of Europe.
    • Clinical Pathology of Plastic Ingestion in Marine Birds and Relationships with Blood Chemistry.

      Lavers, JL; Hutton, I; Bond, AL (American Chemical Society, 2019-07-15)
      Pollution of the environment with plastic debris is a significant and rapidly expanding threat to biodiversity due to its abundance, durability, and persistence. Current knowledge of the negative effects of debris on wildlife is largely based on consequences that are readily observed, such as entanglement or starvation. Many interactions with debris, however, result in less visible and poorly documented sublethal effects, and as a consequence, the true impact of plastic is underestimated. We investigated the sublethal effects of ingested plastic in Flesh-footed Shearwaters (Ardenna carneipes) using blood chemistry parameters as a measure of bird health. The presence of plastic had a significant negative effect on bird morphometrics and blood calcium levels and a positive relationship with the concentration of uric acid, cholesterol, and amylase. That we found blood chemistry parameters being related to plastic pollution is one of the few examples to date of the sublethal effects of marine debris and highlights that superficially healthy individuals may still experience the negative consequences of ingesting plastic debris. Moving beyond crude measures, such as reduced body mass, to physiological parameters will provide much needed insight into the nuanced and less visible effects of plastic.