Our unrivalled collections, broad expertise and cutting-edge equipment allow us to carry out complex non-destructive analyses of naturally occurring samples, and identify and interpret other materials such as metals, ceramics and composites.

Recent Submissions

  • Professional fossil preparators at the British Museum (Natural History), 1843-1990*

    Graham, M; Reichenbach, H (Edinburgh University Press, 2019-10-01)
    Since the inception of the British Museum (Natural History) in 1881 (now the Natural History Museum, London), the collection, development and mounting of fossils for scientific study and public exhibition have been undertaken by fossil preparators. Originally known as masons, because of their rock-working skills, their roles expanded in the late nineteenth and early twentieth centuries, when, at the forefront of the developing science of palaeontology, the Museum was actively obtaining fossil material from the UK and abroad to build the collections. As greater numbers of more impressive specimens were put on public display, these preparators developed new and better methods to recover and transport fossils from the field, and technical improvements, in the form of powered tools, enabled more detailed mechanical preparation to be undertaken. A recurring theme in the history of palaeontological preparation has been that sons often followed in their fathers’ footsteps in earth sciences. William and Thomas Davies, Caleb and Frank Barlow, and Louis and Robert Parsons were all father-and-son geologists and preparators.
  • The air-abrasive technique: A re-evaluation of its use in fossil preparation

    Graham, M; Allington-Jones, L (Society of Vertebrate Paleontology, 2018-08)
    This paper outlines the history of air-abrasion (also known as airbrasion) as a paleontological preparation technique and evaluates various powders and their properties. It explores the rationale behind the selection of abrasive powders and presents, for the first time, trench-scatter experiments through Scanning Electron Microscope (SEM) photography and three-dimensional (3-D) profiling. This article also offers general practical advice and details the results of an international survey of practising fossil preparators.
  • Alkali-rich replacement zones in evolved NYF pegmatites: metasomatic fluids or immiscible melts?

    Muller, A; Spratt, J; Thomas, R; Williamson, BJ; Seltmann, R (International Mineralogical Association, 2018-08-13)
    IMA2018 Abstract submission Pegmatite mineralogy, geochemistry, classification and origins IMA2018-1337 Alkali-rich replacement zones in evolved NYF pegmatites: metasomatic fluids or immiscible melts? Axel Muller* 1, John Spratt2, Rainer Thomas3, Ben J. Williamson4, Reimar Seltmann2 1Natural History Museum, University of Oslo, Oslo, Norway, 2Department of Earth Sciences, Natural History Museum, London, United Kingdom, 3Chemistry and Physics of Earth Materials, German Research Centre for Geoscience GFZ, Potsdam, Germany, 4Camborne School of Mines, University of Exeter, Penryn, United Kingdom What is your preferred presentation method?: Oral or poster presentation : Replacement zones (RZ), which are a common feature of evolved granitic pegmatites, are irregular, commonly alkali-rich zones superimposing, cross-cutting and replacing the primary zonation in almost all consolidated pegmatite bodies. RZ are widely considered to result from late-stage metasomatism even though little is known about the melts and/or fluids involved in their formation. However, the observed textures and mineral paragenesis of RZ cannot be explained by metasomatism in a strict sense. In this study, the nature of the late stage silicate melt forming “cleavelandite” RZ is assessed from textural, mineralogical, chemical and melt inclusion studies of evolved, Proterozoic Niobium-Yttrium-Fluorine (NYF) rare metal pegmatites from Evje–Iveland, southern Norway. These were studied as they are mineralogically simple, compared with RZ in evolved Lithium-Caesium-Tantalum (LCT) pegmatites. Silicate melt inclusions in RZ-forming topaz and “cleavelandite” document high H2O contents of up to18 wt.% of the F-rich silicate melt from which the RZ crystallized. In addition, from mineral compositions (“cleavelandite”, “amazonite”, white mica, garnet, columbite group minerals, topaz, fluorite, and beryl), they must have also been strongly alkaline (Na-dominated) with enrichments in F (at least 4 wt.%), Cs, Rb, Ta, Nb, Mn, Ge, Bi, As, and in some cases also Li compared with host pegmatites. These elements are concentrated in a few RZ-forming minerals resulting in very distinctive mineral-trace element signatures. “Amazonite” is strongly enriched in Cs and Rb and often white mica and beryl in Li and Cs. To acquire these mineral compositions, the overall Li-Cs-Ta-poor Evje-Iveland original pegmatite melt must have undergone extreme internal chemical differentiation resulting in melt/melt immiscibility aiding rheology contrasts and resulting in RZ formation. The resulting RZ-forming H2O-F-rich silicate melt would have shown large differences in viscosity and density, and therefore physical flow/transport properties, to the host pegmatite melt resulting in discordant contacts. The mineralogy and melt inclusion data from the Evje-Iveland pegmatites document a gradient of crystallization temperatures within the investigated pegmatite bodies with highest temperatures at the pegmatite margin (during initial emplacement, ~680°C) and lowest temperatures within the RZ (<500°C). Considering the temperature and pressure conditions of the host rocks gneisses and amphibolites (~650°C, up to 5 kbar) at the time of pegmatite emplacement and the crystallization conditions of the RZ, the Evje- Iveland pegmatites and RZ likely formed over a period of 2.2 million years, assuming an exhumation rate of 1.5 mm per million years and a geothermal gradient of 45°C km-1. Such a long crystallization time contradicts the classical view that pegmatites represent strongly undercooled melts which crystallize relatively fast.
  • The crystal structure of cesbronite, Cu 3 TeO 4 (OH) 4 : a novel sheet tellurate topology

    Missen, OP; Mills, SJ; Welch, MD; Spratt, J; Rumsey, MS; Birch, WD; Brugger, J (International Union of Crystallography, 2018-01-09)
    The crystal structure of cesbronite has been determined using single-crystal X-ray diffraction and supported by electron-microprobe analysis, powder diffraction and Raman spectroscopy. Cesbronite is orthorhombic, space group Cmcm, with a = 2.93172 (16), b = 11.8414 (6), c = 8.6047 (4) Å and V = 298.72 (3) Å3. The chemical formula of cesbronite has been revised to CuII3TeVIO4(OH)4 from CuII5(TeIVO3)2(OH)6·2H2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 17-C. The previously reported oxidation state of tellurium has been shown to be incorrect; the crystal structure, bond valence studies and charge balance clearly show tellurium to be hexavalent. The crystal structure of cesbronite is formed from corrugated sheets of edge-sharing CuO6 and (Cu0.5Te0.5)O6 octahedra. The structure determined here is an average structure that has underlying ordering of Cu and Te at one of the two metal sites, designated as M, which has an occupancy Cu0.5Te0.5. This averaging probably arises from an absence of correlation between adjacent polyhedral sheets, as there are two different hydrogen-bonding configurations linking sheets that are related by a ½a offset. Randomised stacking of these two configurations results in the superposition of Cu and Te and leads to the Cu0.5Te0.5 occupancy of the M site in the average structure. Bond-valence analysis is used to choose the most probable Cu/Te ordering scheme and also to identify protonation sites (OH). The chosen ordering scheme and its associated OH sites are shown to be consistent with the revised chemical formula.
  • Trace-element geochemistry of molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia)

    Plotinskaya, OY; Abramova, VD; Groznova, EO; Tessalina, SG; Seltmann, R; Spratt, J (Cambridge University Press, 2018-05)
    Mineralogical, electron microprobe analysis and laser ablation-inductively coupled plasma-mass spectrometry data from molybdenite within two porphyry copper deposits (Kalinovskoe and Birgilda) of the Birgilda-Tomino ore cluster (South Urals) are presented.† The results provide evidence that molybdenites from these two sites have similar trace-element chemistry. Most trace elements (Si, Fe, Co, Cu, Zn, Ag, Sb, Te, Pb, Bi, Au, As and Se) form mineral inclusions within molybdenite. The Re contents in molybdenite vary from 8.7 ppm to 1.13 wt.%. The Re distribution within single molybdenite flakes is always extremely heterogeneous. It is argued that a temperature decrease favours the formation of Re-rich molybdenite. The high Re content of molybdenite observed points to a mantle-derived source.
  • Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes

    Zaitsev, AN; Terry Williams, C; Jeffries, T; Strekopytov, S; Moutte, J; Ivashchenkova, OV; Spratt, J; Petrov, SV; Wall, F; Seltmann, R; et al. (Elsevier, 2014-09)
    he Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.
  • A New Method for the Restoration of Palaeontological Specimens Mounted in Canada balsam

    Allington-Jones, L (Natural Sciences Collections Association (NatSCA ), 2008)
    Many museums contain slides mounted with Canada balsam. If this resin is poorly prepared, it can become crazed. Examples can be found within the British Type Graptolite Collection at the Natural History Museum, London. These are delicate dendroids prepared using the transfer technique. A search of the available literature and communication with museum workers highlighted suggestions for methods to rescue the cracked slides. These methods were tested, and the most suitable method proved to be a double transfer technique utilising carbowax. This technique may be used to rescue any specimen which is mounted in Canada balsam and which possesses an exposed surface. It is particularly important for the conservation of fragile specimens.
  • Mastodon and on and on…a moving story

    Allington-Jones, L (NatSCA, 2018-02-01)
    This is the latest chapter in the history of the mastodon (Mammut americanum (Kerr, 1792)) specimen on display at the Natural History Museum (NHM) in London (UK), and continues from the story told by Lindsay (1991). The specimen was selected to be one of the new exhibits for the Wonder Bays of the refurbished Hintze Hall, at the heart of the Waterhouse building. Residing, until recently, on open display in a different exhibition space, the mastodon required stabilisation and careful dismantling before transportation and reassembly in its new site.
  • Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science

    Smith, V; Rycroft, S; Brake, I; Scott, B; Baker, E; Livermore, L; Blagoderov, V; Roberts, D (Pensoft, 2011-11-28)
    The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project’s operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article.
  • The Phoenix: The Role of Conservation Ethics in the Development of St Pancras Railway Station (London, UK)

    Allington-Jones, L (Ubiquity Press Ltd., 2013-09-02)
    St Pancras Railway Station, London (UK), has recently undergone alterations that have variously been described as conservation, restoration, refurbishment and rejuvenation, to become the new terminal for Eurostar. This article aims to evaluate the recent changes and relate them to current conservation ethics. Observations were made on site, derived from research in published literature and were assessed according to principles of conservation. The article concludes that, in the recent developments, conservation ethics have been drawn upon in an inconsistent fashion, and that the best description for the rebirth of the station is ‘recycling’. Investigation of the ‘conservation’ of significant items of national heritage, like St Pancras, is essential for formulating future standards and evaluating our own perceptions and the diversity of possible interpretations of conservation terminology.
  • Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea

    Woodall, LC; Jungblut, AD; Hopkins, K; Hall, A; Robinson, LF; Gwinnett, C; Paterson, GLJ (PLOS, 2018-11-28)
    The deep sea is the largest biome on earth, and microbes dominate in biomass and abundance. Anthropogenic litter is now almost ubiquitous in this biome, and its deposition creates new habitats and environments, including for microbial assemblages. With the ever increasing accumulation of this debris, it is timely to identify and describe the bacterial and archaeal communities that are able to form biofilms on macrodebris in the deep sea. Using 16S rRNA gene high throughput sequencing, we show for the first time the composition of bacteria and archaea on macrodebris collected from the deep sea. Our data suggest differences in the microbial assemblage composition across litter of different materials including metal, rubber, glass, fabric and plastic. These results imply that anthropogenic macrodebris provide diverse habitats for bacterial and archaeal biofilms and each may harbour distinct microbial communities.
  • SEM-microphotogrammetry, a new take on an old method for generating high-resolution 3D models from SEM images

    BALL, AD; JOB, PA; WALKER, AEL (Wiley, 2017-03-22)
    The method we present here uses a scanning electron microscope programmed via macros to automatically capture dozens of images at suitable angles to generate accurate, detailed three‐dimensional (3D) surface models with micron‐scale resolution. We demonstrate that it is possible to use these Scanning Electron Microscope (SEM) images in conjunction with commercially available software originally developed for photogrammetry reconstructions from Digital Single Lens Reflex (DSLR) cameras and to reconstruct 3D models of the specimen. These 3D models can then be exported as polygon meshes and eventually 3D printed. This technique offers the potential to obtain data suitable to reconstruct very tiny features (e.g. diatoms, butterfly scales and mineral fabrics) at nanometre resolution. Ultimately, we foresee this as being a useful tool for better understanding spatial relationships at very high resolution. However, our motivation is also to use it to produce 3D models to be used in public outreach events and exhibitions, especially for the blind or partially sighted.
  • The air-abrasive technique: a re-evaluation of its use in fossil preparation.

    Graham, M; Allington-Jones, L
    This paper outlines the history of air-abrasion (also known as airbrasion) as a palaeontological preparation technique and evaluates various powders and their properties. It explores the rationale behind the selection of abrasive powders and presents, for the first time, trench-scatter experiments through Scanning Electron Microscope (SEM) photography and three-dimensional (3-D) profiling. This article also offers general practical advice and details the results of an international survey of practising fossil preparators
  • Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring

    Piwoni-Piórewicz, A; Kukliński, P; Strekopytov, S; Humphreys-Williams, Emma; Najorka, J; Iglikowska, A (2017-04)
  • Impact vaporization and Condensation: Laser Irradiation Experiments with Natural Planetary Materials

    Hamann, C; Hecht, L; Schäffer, S; Heunoske, D; Salge, T; Garbout, A; Osterholz, J; Greshake, A (The Woodlands, Texas, USA, 2018)
  • HYPERVELOCITY IMPACT IN LOW EARTH ORBIT: FINDING SUBTLE IMPACTOR SIGNATURES ON THE HUBBLE SPACE TELESCOPE

    Kearsley, AT; Colaux, JL; Wozniakiewicz, PJ; Gerlach, L; Anz-Meador, P; Liou, JC; Griffin, T; Reed, B; Opiela, J; Palitsin, VV; et al.
    HYPERVELOCITY IMPACT IN LOW EARTH ORBIT: FINDING SUBTLE IMPACTOR SIGNATURES ON THE HUBBLE SPACE TELESCOPE A T Kearsley 1,2,5, J L Colaux 3, D K Ross 4, P J Wozniakiewicz 2,5, L Gerlach 6, P Anz-Meador 4, J-C Liou 7, T Griffin 8, B Reed 8, J Opiela 4, V V Palitsin 3, G W Grime 3, R P Webb 3, C Jeynes 3, J Spratt 2, M J Cole 5, M C Price 5 and M J Burchell 5. 1 Dunholme, Raven Hall Road, Ravenscar, YO13 0NA, UK (kearsleys@runbox.com); 2 Natural History Museum (NHM), Cromwell Road, London, UK. 3 Ion Beam Centre, University of Surrey, Guildford, UK. 4 ESCG-Jacobs, NASA-JSC, Houston, TX, USA. 5 School of Physical Sciences, University of Kent, Canterbury, Kent, UK. 6 European Space Agency (ESA, retired), Noordwijk, The Netherlands. 7 NASA Johnson Space Center, Houston, TX, USA. 8 NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA. ABSTRACT Introduction Return of large surface area components from the Hubble Space Telescope (HST) during shuttle orbiter service missions has allowed inspection of large numbers of hyper-velocity impact features from long exposure in low Earth orbit (LEO). Particular attention has been paid to the origin of the impacting particles, whether artificial Orbital Debris (OD) or natural Micrometeoroid (MM). Extensive studies have been made of solar cells (Graham et al., 2001; Kearsley et al 2005, Moussi et al., 2005) and recently, the painted metal surface of the Wide Field and Planetary Camera 2 WFPC2 radiator shield (Anz-Meador et al., 2013; Colaux et al., 2014; Kearsley et al., 2014a; Ross et al., 2014). Both of these materials from HST have layers of complex chemical composition, into which particle fragments and melt may infiltrate during impact. Experimental light gas gun (LGG) impacts (e.g. Price et al., 2014) have shown that impactor remains may be dispersed and dilute, often as a very thin and patchy coating within an irregular impact-generated pit. In previous studies, the low concentration of particle residue, the rugged topography of impact features, and especially the complex multi-element composition of the impacted surface were considered significant barriers to recognition of extraneous impactor-derived components. Analysis was both difficult and time consuming (e.g. Graham et al., 2001), and a substantial proportion of impactors (25-65%) could not be identified. Recent advances in energy dispersive X-ray microanalysis (EDX) now permit routine identification of impactor origins using scanning electron microscope (SEM); particle induced X-ray emission (PIXE) and micro-X-ray fluorescence (µ-XRF) instruments (Kearsley et al., 2012, 2014b). Here we demonstrate how these techniques have allowed impactor composition to be isolated, and the particle source determined for the great majority of WFPC2 samples studied. Methods To analyse impact melt on the zinc orthotitanate (ZOT) and aluminium alloy (Al-6061) of the WFPC2 radiator shield we used the Oxford Instruments INCA SEM-EDX spectrum pro-cessing software to separate peak and background X-ray counts for specified X-ray emission lines. From tables of likely OD and MM signature elements (e.g. Kearsley et al., 2005), and knowledge of the pristine WFPC paint and alloy compositions, we extracted data for the fol-lowing elements: Mg, Al, Si, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn. Two types of graphical plot were developed, to highlight extraneous element signatures in small impacts on the ZOT paint (Fig. 1), and larger craters into the Al-alloy (Fig. 2). The impactor origin was then clas-sified by reference to a suite of decision trees (Kearsley et al., 2012). A Bruker X-Flash 6050 EDX detector was also used to obtain signal from the interior of deeper craters. PIXE maps and spectra were acquired in the Ion Beam Centre, University of Surrey (Colaux et al., 2014). Results Figure 1. WFPC2 impact feature 339: a) SEM backscattered electron (BE) image; b) SEM depth model; c) SEM-EDX maps show high Mg concentration in the impact melt lining the impact feature d) plots of SEM-EDX X-ray counts for Mg and Fe show much higher levels in impact melt (red) than in clean ZOT paint (blue), and a similar level to impact residue from LGG impacts of olivine grains (open black squares). Excess Mg and Fe contents in frothy impact melt show impactor was a micrometeoroid. Figure 2). WFPC2 impact feature 462: a) SEM BE image; b) SEM depth profile; c and d) PIXE EDX maps show Fe and Ni across crater pit and surrounding metal, some iron-rich in-clusions in the Al alloy, but Ni only enriched in pit; e) PIXE EDX spectra show high Fe and Ni on crater floor, similar to micrometeoroid metal composition; f) plot of Mg/Al versus Cr/Fe X-ray counts in SEM-EDX spectra from the crater edge (red) show enrichment of Mg and Fe over alloy composition (black, grey, yellow and green), indicating a mafic silicate mi-crometeoroid component has also been added from the impacted micrometeoroid. Summary and conclusions Together, SEM-EDX and PIXE-EDX maps, spectra and X-ray count plots showed 166 MM residues and 2 OD residues in this survey of 188 impact features on WFPC2, ~ 90% of those examined, considerable enhancement of impactor recognition over an earlier study of HST impacts (~75% identified as MM or OD in origin, Kearsley et al., 2005). Acknowledgements ESA contract 40001105713/12/NL/GE awarded to NHM and the University of Surrey; Bruker for expertise in use of the X-Flash detector and loan of the M4 Tornado µ-XRF. References quoted Anz-Meador P. et al. (2013) Proc. 6th European Conf. Space Debris, ESA SP 723: s1b_anzme.pdf, CD-ROM. Colaux J. L. et al. (2014) LPSC 45 Abstract #1727. Graham, G.A. et al. (2001) Proc. 3rd European Conf. Space Debris, ESA SP 473:197–203. Kearsley A.T. et al., (2005) Adv. Space Res. 35:1254–1262. Kearsley A. T. et al. (2012) Technical Note 1 for ESA contract 40001105713/12/NL/GE. Kearsley A. T. et al. (2014a) LPSC 45 abstract #1722. Kearsley A.T. et al. (2014b) LPSC 45 abstract #1733. Moussi A. et al. (2005) Adv. Space Res. 35:1243–1253. Price M. C. et al. (2014) LPSC 45 abstract #1466. Ross D. K. et al. (2014) LPSC 45 abstract #1514.
  • The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    Smith, M; Kynicky, J; Chen, X; Wenlei, S; Spratt, J; Jeffries, T; Brnicky, M; Kopriva, A; Cangeloosi, D (2018-03-04)
  • The Clacton Spear: the last one hundred years

    Allington-Jones, L (Royal Archaeological Institute, 2015)
    In 1911 an eminent amateur prehistorian pulled the broken end of a pointed wooden shaft from Palaeolithic-age sediments at a seaside town in Essex. This artefact, still the earliest worked wood to be discovered in the world, became known as the Clacton Spear. Over the past 100 years it has variously been interpreted as a projectile weapon, a stave, a digging stick, a snow probe, a lance, a game stake and a prod to ward off rival scavengers. These perspectives have followed academic fashions, as the popular views of early hominins have altered. Since discovery the Clacton spear has also been replicated twice, has undergone physical transformations due to preservation treatments, and has featured in two public exhibitions. Within this article the changing context of the spear, its parallels, and all previous conservation treatments and their impacts are assessed.

View more