• The air-abrasive technique: A re-evaluation of its use in fossil preparation

      Graham, M; Allington-Jones, L (Coquina Press, 2018-08-02)
      This paper outlines the history of air-abrasion (also known as airbrasion) as a paleontological preparation technique and evaluates various powders and their properties. It explores the rationale behind the selection of abrasive powders and presents, for the first time, trench-scatter experiments through Scanning Electron Microscope (SEM) photography and three-dimensional (3-D) profiling. This article also offers general practical advice and details the results of an international survey of practising fossil preparators.
    • The air-abrasive technique: a re-evaluation of its use in fossil preparation.

      Graham, M; Allington-Jones, L (Coquina Press, 2018-08)
      This paper outlines the history of air-abrasion (also known as airbrasion) as a palaeontological preparation technique and evaluates various powders and their properties. It explores the rationale behind the selection of abrasive powders and presents, for the first time, trench-scatter experiments through Scanning Electron Microscope (SEM) photography and three-dimensional (3-D) profiling. This article also offers general practical advice and details the results of an international survey of practising fossil preparators
    • Assessing myxozoan presence and diversity using environmental DNA

      Hartikainen, H; Bass, D; Briscoe, AG; Knipe, H; Green, AJ; Okamura, B (2016-11)
    • Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

      Hodoroaba, V-D; Rades, S; Salge, T; Mielke, J; Ortel, E; Schmidt, R (2016-02-09)
    • The Clacton Spear: the last one hundred years

      Allington-Jones, L (Royal Archaeological Institute, 2015)
      In 1911 an eminent amateur prehistorian pulled the broken end of a pointed wooden shaft from Palaeolithic-age sediments at a seaside town in Essex. This artefact, still the earliest worked wood to be discovered in the world, became known as the Clacton Spear. Over the past 100 years it has variously been interpreted as a projectile weapon, a stave, a digging stick, a snow probe, a lance, a game stake and a prod to ward off rival scavengers. These perspectives have followed academic fashions, as the popular views of early hominins have altered. Since discovery the Clacton spear has also been replicated twice, has undergone physical transformations due to preservation treatments, and has featured in two public exhibitions. Within this article the changing context of the spear, its parallels, and all previous conservation treatments and their impacts are assessed.
    • Cleaning Minerals: practical and ethical considerations

      Allington-Jones, L (Geological Curators' Group, 2017-11-01)
      Mineral specimens have a dual nature, both as a scientific resource and an aesthetic pleasure. Combine this with a long history of sampling for study, and the developed nature of most specimens on the commercial market, and it is difficult to relate to the ethical principles of conservation when cleaning minerals.
    • Confocal laser scanning microscopy as a valuable tool in Diptera larval morphology studies

      Grzywacz, A; Góral, T; Szpila, K; Hall, MJR (Springer Science and Business Media LLC, 2014-09-19)
      Larval morphology of flies is traditionally studied using light microscopy, yet in the case of fine structures compound light microscopy is limited due to problems of resolution, illumination and depth of field, not allowing for precise recognition of sclerites’ edges and interactions. Using larval instars of cyclorrhaphan Diptera, we show the usefulness of confocal laser scanning microscopy (CLSM) for studying the morphological characters of immature stages by taking advantage of the autofluorescent properties of cephaloskeleton structures. We compare data obtained from killed but unprepared larvae with those from larvae prepared by clearing according to two commonly used methods, either with potassium hydroxide or with Hoyer’s medium. We also evaluated the CLSM application for examining already slide-mounted larvae stored in museum collections and those freshly prepared. Our results indicate that CLSM and 3D reconstruction are excellent for visualizing small, compound structures of cylrorrhaphan larvae cephaloskeleton, if appropriate clearing techniques, i.e. the application of KOH, are used. Maximum intensity projection of confocal data sets obtained from material freshly prepared and that stored in museum collection does not differ. Because of this and the fact that KOH is commonly used as a clearing method to examine the cephaloskeleton of Diptera larvae, it is possible, and highly recommended, to use slides already prepared with this method for re-examination by CLSM. We conclude that CLSM application can be an invaluable source of data for studies of larval morphology of Cyclorrhapha by way of taxonomic diagnoses, character identification and improvement in characters homologization.
    • Conservation of James Sowerby’s Fungi Models

      Bernucci, A; Allington-Jones, L (2015)
    • Crookesite, Cu7TlSe4, from Littleham Cove, Devon: the first mineral containing essential thallium from the British Isles

      Rumsey, MS; Dossett, I; Green, DI; Najorka, J; Spratt, J; Rumsey, MS (The Russell Society, 2015-10-01)
      The rare thallium copper selenide crookesite occurs as dark grey metallic needles in at least two cavities in a nodule collected from cliffs at Littleham Cove, Budleigh Salterton, Devon. This is the first report of a thallium mineral from the British Isles. The small crystal size, confusion in the mineralogical literature and the need to preserve as much of the specimen as possible for future study, made the identification particularly challenging. Thallium minerals have a very limited worldwide distribution. They are almost entirely restricted to unusual low temperature epithermal deposits. The discovery of crookesite in nodules in a Permian red bed environment is, therefore of significant interest. Thallium minerals do not appear to have been reported in this geological setting before.
    • The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R

      Mills, SJ; Christy, AG; Rumsey, MS; Spratt, J (Cambridge University Press, 2016-12-01)
      A crystallographic and chemical study of two 'elsmoreite' samples (previously described as 'ferritungstite') from the Hemerdon mine (now known as the Drakelands mine), Devon, United Kingdom has shown them to be two different polytypes of hydrokenoelsmoreite. Hydrokenoelsmoreite-3C(HKE-3C) crystallizes in space group , with the unit-cell parameter a = 10.3065(3) Å. Hydrokenoelsmoreite-6R (HKE-6R) crystallizes in space group , with the unit-cell parameters a = 7.2882(2) Å and c = 35.7056(14)Å. Chemical analyses showed that both polytypes have Na and Fe/Al substitution giving the formulae: (Na0.28Ca0.04K0.02(H2O)0.20⁏1.46)∑2.00(W1.47Fe3+ 0.32Al0.21As5+ 0.01)∑2.00[O4.79(OH)1.21]∑6.00·(H2O)(3C) and (Na0.24Ca0.04K0.03(H2O)0.63⁏1.06)∑2.00(W1.42Fe3+ 0.49Al0.08As5+ 0.01)∑2.00[O4.65(OH)1.35]∑6.00·(H2O)(6R). The doubling of the unit cell in the 6R phase is due to ordering of Na and ( ,H2O) in the A site; no long-range ordering is observed between W and Fe/Al in the B site.
    • The crystal structure of cesbronite, Cu 3 TeO 4 (OH) 4 : a novel sheet tellurate topology

      Missen, OP; Mills, SJ; Welch, MD; Spratt, J; Rumsey, MS; Birch, WD; Brugger, J (International Union of Crystallography, 2018-01-09)
      The crystal structure of cesbronite has been determined using single-crystal X-ray diffraction and supported by electron-microprobe analysis, powder diffraction and Raman spectroscopy. Cesbronite is orthorhombic, space group Cmcm, with a = 2.93172 (16), b = 11.8414 (6), c = 8.6047 (4) Å and V = 298.72 (3) Å3. The chemical formula of cesbronite has been revised to CuII3TeVIO4(OH)4 from CuII5(TeIVO3)2(OH)6·2H2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 17-C. The previously reported oxidation state of tellurium has been shown to be incorrect; the crystal structure, bond valence studies and charge balance clearly show tellurium to be hexavalent. The crystal structure of cesbronite is formed from corrugated sheets of edge-sharing CuO6 and (Cu0.5Te0.5)O6 octahedra. The structure determined here is an average structure that has underlying ordering of Cu and Te at one of the two metal sites, designated as M, which has an occupancy Cu0.5Te0.5. This averaging probably arises from an absence of correlation between adjacent polyhedral sheets, as there are two different hydrogen-bonding configurations linking sheets that are related by a ½a offset. Randomised stacking of these two configurations results in the superposition of Cu and Te and leads to the Cu0.5Te0.5 occupancy of the M site in the average structure. Bond-valence analysis is used to choose the most probable Cu/Te ordering scheme and also to identify protonation sites (OH). The chosen ordering scheme and its associated OH sites are shown to be consistent with the revised chemical formula.
    • Curious bivalves: Systematic utility and unusual properties of anomalodesmatan mitochondrial genomes

      Williams, ST; Foster, PG; Hughes, C; Harper, EM; Taylor, JD; Littlewood, T; Dyal, P; Hopkins, KP; Briscoe, AG (2017-05)
    • Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea

      Woodall, LC; Jungblut, AD; Hopkins, K; Hall, A; Robinson, LF; Gwinnett, C; Paterson, GLJ (PLOS, 2018-11-28)
      The deep sea is the largest biome on earth, and microbes dominate in biomass and abundance. Anthropogenic litter is now almost ubiquitous in this biome, and its deposition creates new habitats and environments, including for microbial assemblages. With the ever increasing accumulation of this debris, it is timely to identify and describe the bacterial and archaeal communities that are able to form biofilms on macrodebris in the deep sea. Using 16S rRNA gene high throughput sequencing, we show for the first time the composition of bacteria and archaea on macrodebris collected from the deep sea. Our data suggest differences in the microbial assemblage composition across litter of different materials including metal, rubber, glass, fabric and plastic. These results imply that anthropogenic macrodebris provide diverse habitats for bacterial and archaeal biofilms and each may harbour distinct microbial communities.
    • Does Micro-CT scanning damage DNA in museum specimens?

      Hall, A; Sherlock, E; Sykes, D (Natural Science Collections Association, 2015)
      X-ray micro-computed tomography and DNA sequencing are useful and increasingly common tools in taxonomy and collections research. Whilst the benefits of each method are continually evaluated and debated individually, how the methods impact each other requires more attention. We compared DNA fragment length and the barcode sequence CO1 in samples throughout a CT-scanning protocol, for a range of X-ray exposures and energies. We found no evidence of DNA damage, but advise caution when using precious or archival material, highlighting the need for further investigations and considering potential areas for research.
    • Exploring miniature insect brains using micro-CT scanning techniques

      Smith, DB; Bernhardt, G; Raine, NE; Abel, RL; Sykes, D; Ahmed, F; Pedroso, I; Gill, RJ (2016-04)