• iCollections

      Paterson, GLJ; Albuquerque, S; Blagoderov, V; Brooks, S; Cafferty, S; Cane, E; Carter, V; Chainey, J; Crowther, R; Douglas, L; et al. (2016-06-03)
      iCollections specimens
    • Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps

      Georgieva, MN; Little, CTS; Watson, JS; Sephton, MA; Ball, AD; Glover, AG (2017-12-28)
    • Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda)

      Williams, ST; Ito, S; Wakamatsu, K; Goral, T; Edwards, NP; Wogelius, RA; Henkel, T; de Oliveira, LFC; Maia, LF; Strekopytov, S; et al. (2016-07-01)
    • IMp: The customizable LEGO® Pinned Insect Manipulator

      Dupont, S; Price, BW; Blagoderov, V (2015-02-04)
    • Impact vaporization and Condensation: Laser Irradiation Experiments with Natural Planetary Materials

      Hamann, C; Hecht, L; Schäffer, S; Heunoske, D; Salge, T; Garbout, A; Osterholz, J; Greshake, A (The Woodlands, Texas, USA, 2018)
    • Inselect: Automating the Digitization of Natural History Collections

      Hudson, L; Blagoderov, V; Heaton, A; Holtzhausen, P; Livermore, L; Price, BW; van der Walt, S; Smith, V; Cellinese, N (2015-11-23)
    • Mastodon and on and on…a moving story

      Allington-Jones, L (NatSCA, 2018-02-01)
      This is the latest chapter in the history of the mastodon (Mammut americanum (Kerr, 1792)) specimen on display at the Natural History Museum (NHM) in London (UK), and continues from the story told by Lindsay (1991). The specimen was selected to be one of the new exhibits for the Wonder Bays of the refurbished Hintze Hall, at the heart of the Waterhouse building. Residing, until recently, on open display in a different exhibition space, the mastodon required stabilisation and careful dismantling before transportation and reassembly in its new site.
    • Mechanisms for the generation of HREE mineralization in carbonatites: Evidence from Huanglongpu, China.

      Smith, M; Cangelosi, D; Yardley, B; Wenlei Song, CX; Spratt, J (The Society for Geology Applied to Mineral Deposits, 2019-12-30)
      The Hunaglongpu carbonatites, Qinling Mountains, China, are exceptional as they form both an economic Mo resource, and are enriched in the HREE compared to typical carbonatites, giving a metal profile that may closely match projected future demand. The carbonatites at the level currently exposed appear to be transitional between magmatic and hydrothermal processes. The multistage dykes and veins are cored by quartz which hosts a fluid inclusion assemblage with a high proportion of sulphate daughter or trapped minerals, and later stage, cross-cutting veins are rich in barite-celestine. The REE mineral paragenesis evolves from monazite, through apatite and bastnäsite to Ca-REE fluorcabonates, with an increase in HREE enrichment at every stage. Radio-isotope ratios are typical of enriched mantle sources and sulphur stable isotopes are consistent with magmatic S sources. However, Mg stable isotopes are consistent with a component of recycled subducted marine carbonate in the source region, The HREE enrichment is a function of both unusual mantle source for the primary magmas and REE mobility and concentration during post-magmatic modification in a sulphate-rich hydrothermal system. Aqueous sulphate is a none specific ligand for the REE, and this coupled with crystal fraction lead to HREE enrichment during subsolidus alteration.
    • Mineralization of Alvinella polychaete tubes at hydrothermal vents

      Georgieva, MN; Little, CTS; Ball, AD; Glover, AG (2015-03)
    • The mineralogy of the effusive silicate rocks from the Mosonik volcano, Northern Tanzania.

      Sedova, AM; Zaitsev, AN; Spratt, J (Vernadsky Institute of Geochemistry and Anlytical Chemistry of Russian Academy of Sciences (GEOKHI RAS), 2018-10-01)
      International Conference on Magmatism of the Earth and Related Strategic Metal Deposits 3-7 September, 2018 Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences, Moscow, Russia. The mineralogy of the effusive silicate rocks from the Mosonik volcano, Northern Tanzania Sedova А.М.1, Zaitsev A.N.1,2, J. Spratt2 1 Department of Mineralogy, St. Petersburg State University, Saint-Petersburg, Russia, e-mail: a.sedova@spbu.ru 2Department of Core Research Laboratories, Natural History Museum, London, UK The Mosonik volcano belongs to the Neogene-Resent volcanics of the Natron-Engaruka region of the East African Rift system. It is one of several stratovolcanoes located on the northeastern tip of the Gregory Rift Valley. Mosonik is attributed as having the earliest phase of eruptions in this province (Dawson, 2008) and is dated in the range 3.18-1.28 Ma (Isaac & Curtis, 1974; Dawson, 2008). In 1961, it was mapped by the Tanganyika Geological Survey (Guest et al., 1961), with published data (Paslick et al., 1996) on the composition of minerals from basanites, nephelinites and phonolites. According to the results of this study the compositions of melilite and nephelinite, Zaitsev et al. (2015) have indicated that the Mosonik volcano could be a potential source for the Upper Laetolil Footprint Tuff 7. According to our data the main effusive rocks of Mosonic are various nephelinites and phonolites, quite often they contain xenoliths of plutonic rocks: melteigites, foyaites, ijolites, and rocks of the enclosing stratum (andesites). Carbonatites mostly occur as boulders of various sizes within creek deposits. Among nephelinites there are nephelinites s.s., phonolitic nephelinites, calcite-phonolite nephelinites and melilite nephelinites. Microphenocrysts are represented by nepheline (45-60%), pyroxenes of diopside-hedenbergite solid solution, in some cases with aegirine edging (15-30%), apatite (3-10%) and titanite (3-10%). Calcite content reaches 10% within the calcite varieties of nephelinites; sanidine up to 10% in phonolitic nephelinites, which are strongly altered. Melilite nephelinites are also characterized by the following coposition: melilite (20%), perovskite (5%), sherlomite (3%). In rare cases within the nephelinites there are microphenocrysts of nepheline. Phonolites are represented by the following species: phonolites, sodalite phonolites and calcite phonolites. Phenocrysts are represented by nepheline (40-65%), pyroxenes of the diopside-hedenbergite series, rarely with aegirine edging (10-50%), sanidine (15-40%), Mg-Fe mica (0-5%), titanite (1-10%), and apatite (0-8%). In these rocks a large number of macrophenic crystals of nepheline, pyroxene, and often sanidine are observed. The work is supported by Russian Foundation of Basic Research (grant 18-05-00835) and St. Petersburg State University (Geomodel Resource Center) References Dawson J. B. The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania. London. 2008. 112 pp. Guest N. J., James, T. C Pickering R., and Dawson J. B. Angata salei. Geol. Surv. Tanganyika. Quarter degree sheet 39. 1961 Isaac, G. L. & Curtis, G. H. Age of the Acheulian industries from the Peninj Group, Tanzania // Nature. 1974. p.249. Paslick, C., Halliday, A. N., Lange, R. A., James, D. & Dawson, J. B. Indirect crustal contamination: evidence from isotopic and chemical disequilibria in minerals from alkali basalts and nephelinites from northern Tanzania // Contributions to Mineralogy and Petrology. Vol. 125. 1996. 277–292. Zaitsev A.N., Spratt J., Sharygin V.V., Wenzel T., Zaitseva O.A., Markl G. Mineralogy of the Laetolil Footprint Tuff: A comparison with possible volcanic sources from the Crater Highlands and Gregory Rift // Journal of African Earth Sciences. Vol. 111. 2015. pp. 214–221.
    • The mitochondrial genome of Parascaris univalens - implications for a “forgotten” parasite

      Jabbar, A; Littlewood, T; Mohandas, N; Briscoe, AG; Foster, PG; Müller, F; von Samson-Himmelstjerna, G; Jex, AR; Gasser, RB (2014)
    • A New Method for the Restoration of Palaeontological Specimens Mounted in Canada balsam

      Allington-Jones, L (Natural Sciences Collections Association (NatSCA ), 2008)
      Many museums contain slides mounted with Canada balsam. If this resin is poorly prepared, it can become crazed. Examples can be found within the British Type Graptolite Collection at the Natural History Museum, London. These are delicate dendroids prepared using the transfer technique. A search of the available literature and communication with museum workers highlighted suggestions for methods to rescue the cracked slides. These methods were tested, and the most suitable method proved to be a double transfer technique utilising carbowax. This technique may be used to rescue any specimen which is mounted in Canada balsam and which possesses an exposed surface. It is particularly important for the conservation of fragile specimens.
    • A new metriorhynchid crocodylomorph from the Oxford Clay Formation (Middle Jurassic) of England, with implications for the origin and diversification of Geosaurini

      Foffa, Davide; Young, Mark T; Brusatte, Stephen L; Graham, M; Steel, Lorna (Taylor and Francis, 2017-10-02)
      Metriorhynchids are an extinct group of Jurassic–Cretaceous crocodylomorphs secondarily adapted to a marine lifestyle. A new metriorhynchid crocodylomorph from the Oxford Clay Formation (Callovian, Middle Jurassic) of England is described. The specimen is a large, fragmentary skull and associated single ramus of a lower jaw uniquely preserved in a septarian concretion. The description of the specimen reveals a series of autapomorphies (apicobasal flutings on the middle labial surface of the tooth crowns, greatly enlarged basoccipital tuberosities) and a unique combination of characters that warrant the creation of a new genus and species: Ieldraan melkshamensis gen. et sp. nov. This taxon shares numerous characters with the Late Jurassic–Early Cretaceous genus Geosaurus: tooth crowns that have three apicobasal facets on their labial surface, subtly ornamented skull and lower jaws elements, and reception pits along the lateral margin of the dentary (maxillary overbite). Phylogenetic analysis places this new species as the sister taxon to Geosaurus. The new taxon adds valuable information on the time of origin of the macrophagous subclade Geosaurini, which was initially thought to have evolved and radiated during the Late Jurassic. The presence of Ieldraan melkshamensis, the phylogenetic re-evaluation of Suchodus durobrivensis as a Plesiosuchus sister taxon and recently identified Callovian Dakosaurus-like specimens in the Oxford Clay Formation, indicate that all major Geosaurini lineages originated earlier than previously supposed. This has major implications for the evolution of macropredation in the group. Specifically, we can now demonstrate that the four different forms of true ziphodonty observed in derived geosaurins independently evolved from a single non-functional microziphodont common ancestor.
    • Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

      Maddock, ST; Briscoe, AG; Wilkinson, M; Waeschenbach, A; San Mauro, D; Day, JJ; Littlewood, T; Foster, PG; Nussbaum, RA; Gower, DJ; et al. (2016-06-09)
    • No specimen left behind: industrial scale digitization of natural history collections

      Blagoderov, V; Kitching, I; Livermore, L; Simonsen, TJ; Smith, V (2012-07-20)
    • The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

      Smith, M; Kynicky, J; Chen, X; Wenlei, S; Spratt, J; Jeffries, T; Brnicky, M; Kopriva, A; Cangeloosi, D (2018-03-04)
    • An overlooked contributor to palaeontology—the preparator Richard Hall (b. 1839) and his work on an armoured dinosaur and a giant sea dragon

      Graham, M; Radley, Jonathan; Lomax, Dean; Brewer, Pip (Geological Curator, 2020-11-12)
      The work of Richard Hall, a fossil preparator at the British Museum (Natural History) in the late 19th century, has been largely unrecorded. It included the excavation, preparation and restoration of two important specimens: the dinosaur Polacanthus foxii and the ichthyosaur Temnodontosaurus platyodon. The painstaking reconstruction of the dorsal shield of Polacanthus took seven years to complete and enabled a supplemental note redescribing the specimen to be published in 1887. The significance of the discovery in 1898 of the Temnodontosaurus to the town of Stockton in Warwickshire was such that it featured in an article in Nature. It has entered the local folklore and remains celebrated on the town’s road signage and features as the logo of Stockton Primary School.