Core research labs and consulting: Recent submissions
Now showing items 1-20 of 104
-
A Tube-Dwelling Early Cambrian LobopodianFacivermis yunnanicus [1, 2] is an enigmatic worm-like animal from the early Cambrian Chengjiang Biota of Yunnan Province, China. It is a small (<10 cm) bilaterian with five pairs of spiny anterior arms, an elongated body, and a swollen posterior end. The unusual morphology of Facivermis has prompted a history of diverse taxonomic interpretations, including among annelids [1, 3], lophophorates [4], and pentastomids [5]. However, in other studies, Facivermis is considered to be more similar to lobopodians [2, 6-8]-the fossil grade from which modern panarthropods (arthropods, onychophorans, and tardigrades) are derived. In these studies, Facivermis is thought to be intermediate between cycloneuralian worms and lobopodians. Facivermis has therefore been suggested to represent an early endobenthic-epibenthic panarthropod transition [6] and to provide crucial insights into the origin of paired appendages [2]. However, the systematic affinity of Facivermis was poorly supported in a previous phylogeny [6], partially due to incomplete understanding of its morphology. Therefore, the evolutionary significance of Facivermis remains unresolved. In this study, we re-examine Facivermis from new material and the holotype, leading to the discovery of several new morphological features, such as paired eyes on the head and a dwelling tube. Comprehensive phylogenetic analyses using parsimony, Bayesian inference, and maximum likelihood all support Facivermis as a luolishaniid in a derived position within the onychophoran stem group rather than as a basal panarthropod. In contrast to previous studies, we therefore conclude that Facivermis provides a rare early Cambrian example of secondary loss to accommodate a highly specialized tube-dwelling lifestyle.
-
Evidence for shock‐induced anhydrite recrystallization and decomposition at the UNAM‐7 drill core from the Chicxulub impact structureAbstract: Drill core UNAM‐7, obtained 126 km from the center of the Chicxulub impact structure, outside the crater rim, contains a sequence of 126.2 m suevitic, silicate melt‐rich breccia on top of a silicate melt‐poor breccia with anhydrite megablocks. Total reflection X‐ray fluorescence analysis of altered silicate melt particles of the suevitic breccia shows high concentrations of Br, Sr, Cl, and Cu, which may indicate hydrothermal reaction with sea water. Scanning electron microscopy and energy‐dispersive spectrometry reveal recrystallization of silicate components during annealing by superheated impact melt. At anhydrite clasts, recrystallization is represented by a sequence of comparatively large columnar, euhedral to subhedral anhydrite grains and smaller, polygonal to interlobate grains that progressively annealed deformation features. The presence of voids in anhydrite grains indicates SOx gas release during anhydrite decomposition. The silicate melt‐poor breccia contains carbonate and sulfate particles cemented in a microcrystalline matrix. The matrix is dominated by anhydrite, dolomite, and calcite, with minor celestine and feldspars. Calcite‐dominated inclusions in silicate melt with flow textures between recrystallized anhydrite and silicate melt suggest a former liquid state of these components. Vesicular and spherulitic calcite particles may indicate quenching of carbonate melts in the atmosphere at high cooling rates, and partial decomposition during decompression at postshock conditions. Dolomite particles with a recrystallization sequence of interlobate, polygonal, subhedral to euhedral microstructures may have been formed at a low cooling rate. We conclude that UNAM‐7 provides evidence for solid‐state recrystallization or melting and dissociation of sulfates during the Chicxulub impact event. The lack of anhydrite in the K‐Pg ejecta deposits and rare presence of anhydrite in crater suevites may indicate that sulfates were completely dissociated at high temperature (T> 1465 °C)—whereas ejecta deposited near the outer crater rim experienced postshock conditions that were less effective at dissociation.
-
Impact‐Induced Porosity and Microfracturing at the Chicxulub Impact StructureAbstract: Porosity and its distribution in impact craters has an important effect on the petrophysical properties of impactites: seismic wave speeds and reflectivity, rock permeability, strength, and density. These properties are important for the identification of potential craters and the understanding of the process and consequences of cratering. The Chicxulub impact structure, recently drilled by the joint International Ocean Discovery Program and International Continental scientific Drilling Program Expedition 364, provides a unique opportunity to compare direct observations of impactites with geophysical observations and models. Here, we combine small‐scale petrographic and petrophysical measurements with larger‐scale geophysical measurements and numerical simulations of the Chicxulub impact structure. Our aim is to assess the cause of unusually high porosities within the Chicxulub peak ring and the capability of numerical impact simulations to predict the gravity signature and the distribution and texture of porosity within craters. We show that high porosities within the Chicxulub peak ring are primarily caused by shock‐induced microfracturing. These fractures have preferred orientations, which can be predicted by considering the orientations of principal stresses during shock, and subsequent deformation during peak ring formation. Our results demonstrate that numerical impact simulations, implementing the Dynamic Collapse Model of peak ring formation, can accurately predict the distribution and orientation of impact‐induced microfractures in large craters, which plays an important role in the geophysical signature of impact structures.
-
Brecciation at the grain scale within the lithologies of the Winchcombe Mighei‐like carbonaceous chondriteAbstract: The Mighei‐like carbonaceous (CM) chondrites have been altered to various extents by water–rock reactions on their parent asteroid(s). This aqueous processing has destroyed much of the primary mineralogy of these meteorites, and the degree of alteration is highly heterogeneous at both the macroscale and nanoscale. Many CM meteorites are also heavily brecciated juxtaposing clasts with different alteration histories. Here we present results from the fine‐grained team consortium study of the Winchcombe meteorite, a recent CM chondrite fall that is a breccia and contains eight discrete lithologies that span a range of petrologic subtypes (CM2.0–2.6) that are suspended in a cataclastic matrix. Coordinated multitechnique, multiscale analyses of this breccia reveal substantial heterogeneity in the extent of alteration, even in highly aqueously processed lithologies. Some lithologies exhibit the full range and can comprise nearly unaltered coarse‐grained primary components that are found directly alongside other coarse‐grained components that have experienced complete pseudomorphic replacement by secondary minerals. The preservation of the complete alteration sequence and pseudomorph textures showing tochilinite–cronstedtite intergrowths are replacing carbonates suggest that CMs may be initially more carbonate rich than previously thought. This heterogeneity in aqueous alteration extent is likely due to a combination of microscale variability in permeability and water/rock ratio generating local microenvironments as has been established previously. Nevertheless, some of the disequilibrium mineral assemblages observed, such as hydrous minerals juxtaposed with surviving phases that are typically more fluid susceptible, can only be reconciled by multiple generations of alteration, disruption, and reaccretion of the CM parent body at the grain scale.
-
A microchondrule‐bearing micrometeorite and comparison with microchondrules in <scp>CM</scp> chondritesAbstract: We report the discovery of a partially altered microchondrule within a fine‐grained micrometeorite. This object is circular, <10 μm in diameter, and has a cryptocrystalline texture, internal zonation, and a thin S‐bearing rim. These features imply a period of post‐accretion parent body aqueous alteration, in which the former glassy igneous texture was subject to hydration and phyllosilicate formation as well as leaching of fluid‐mobile elements. We compare this microchondrule to three microchondrules found in two CM chondrites: Elephant Moraine (EET) 96029 and Murchison. In all instances, their formation appears closely linked to the late stages of chondrule formation, chondrule recycling, and fine‐grained rim accretion. Likewise, they share cryptocrystalline textures and evidence of mild aqueous alteration and thus similar histories. We also investigate the host micrometeorite's petrology, which includes an unusually Cr‐rich mineralogy, containing both Mn‐chromite spinel and low‐Fe‐Cr‐rich (LICE) anhydrous silicates. Because these two refractory phases cannot form together in a single geochemical reservoir under equilibrium condensation, this micrometeorite's accretionary history requires a complex timeline with formation via nonequilibrium batch crystallization or accumulation of materials from large radial distances. In contrast, the bulk composition of this micrometeorite and its internal textures are consistent with a hydrated carbonaceous chondrite source. This micrometeorite is interpreted as a fragment of fine‐grained rim material that once surrounded a larger parent chondrule and was derived from a primitive carbonaceous parent body; either a CM chondrite or Jupiter family comet.
-
Post-cratering melting of target rocks at the impact melt contact: Observations from the Vredefort impact structure, South AfricaImpact melt is generated following hypervelocity impact events. Emplacement of impact melt dikes, such as the Vredefort Granophyre Dikes, allow for this high temperature melt to come into contact with deeply-buried target rocks after the cratering process is completed. Our study analyzes the effects of this interaction by examining the direct contact between the Vredefort Granophyre and the granitic host at the Kopjeskraal and Lesutoskraal Granophyre Dikes using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron backscatter diffraction (EBSD), and X-ray micro-computed tomography (μCT). A several-mm-thick transition zone between the host rock and the impact melt is enriched in SiO2 and indicates preferential melting of feldspar and mica in the host rock by interaction with the impact melt. Immiscible droplets of newly-formed silicate melt migrated from the transition zone into the impact melt. We observe inundations of the impact melt along narrow fractures into the host rocks, which, in some cases, surround and incorporate fragments of the host rock into the melt body. We suggest three possible mechanisms by which components of the host rock can enter the impact melt: 1) fragmentation of the host rock prior to melt emplacement and subsequent entrainment into the melt; 2) inundations of melt around fragments of host rock at the contact, followed by incorporation of the host rock into the melt; 3) melting of the host rock and immiscible migration of melt fragments within the impact melt. The lack of observed assimilation of the granitic fragments into the impact melt, either because of silica saturation or viscosity contrast between the melts, suggests that the bulk composition of the Granophyre Dike matrix approximately represents the composition of the impact melt sheet.
-
Alteration conditions on the CM and CV parent bodies – Insights from hydrothermal experiments with the CO chondrite KainsazThis study simulates the hydrothermal conditions that existed on carbonaceous chondrite planetesimals in the early solar system. Our experiments are relevant to alteration conditions that existed on the CV parent body and the late stage oxidizing alteration of the CM chondrites. We conducted 11 alteration experiments using chips of the CO3 chondrite Kainsaz. Water was added to each chip and sealed in separate Teflon reaction vessels for 175 days. Samples were altered at different initial water-to-rock ratios (W/R: 0.2–0.8) and temperatures (50 °C and 150 °C). Isotopically doped 17O-rich heavy water (δ17O: +64.5‰) was used in five runs. All samples experienced pronounced alteration under a partially open system environment where gases were able to escape the reaction vessels. The style of alteration (Fe-alkali metasomatism) is similar in all cases. The principal alteration minerals formed are Fe-oxyhydroxides (goethite) and Fe-oxides (magnetite), with smaller quantities of Fe-sulphides. Minor phases formed include fayalite, sulphates (gypsum and Fe-sulphate) and calcite. Nanophase, poorly crystalline phyllosilicates formed in the high-temperature samples but are absent from the low-temperature experiments. In all instances, Mg-rich chondrule silicates remained chemically unaltered although some grains suffered hydrothermal fracture. Chondrule mesostases remained largely unaffected. By contrast, kamacite readily dissolved, acting as a source of Fe and Ni for the fluid phase. A new generation of nanophase Fe-sulphides formed within the matrix, while pre-existing pyrrhotite group sulphides experienced Ni enrichment (<3 at%). In the high temperature samples these sulphides were also partially oxidized, lowering their (Fe + Ni)/S ratio. High-Ni sulphides (pyrrhotite with Ni > 10 at%) were formed in the 150 °C samples, most likely by sulphidation of taenite. Matrix alteration cemented grains together, reducing porosity. The fine-grained matrix shows highly variable degrees of alteration, with minimally altered matrix in direct contact with regions of heavily altered matrix. Chondrule fine-grained rims (FGRs) were preferentially altered. These textures imply that the unaltered matrix readily reacted with the fluid phase, resulting in an efficient depletion of dissolved ions (Fe2+ and S2-), limiting reactivity until further primary phases were dissolved. At larger length-scales the distribution of heavily altered matrix reveals the presence of large ∼100 µm wide channels that meander through the specimens. Their textures resemble features seen in some CM chondrites and the ungrouped CO-like chondrite MIL 07687. We suggest that alteration fronts developed by sustained rapid reaction of matrix with dissolved cations in solution. Our observations provide a mechanism for the establishment and maintenance of geochemical microenvironments on chondritic asteroids. The effects of open system loss notwithstanding, our experiments demonstrate that more advanced alteration is correlated with higher initial W/R ratios. The use of 17O-rich doped water allowed the isotopic effects of aqueous alteration to be observed. Bulk rock compositions evolved towards the initial water composition, reflecting the incorporation of heavy O into hydrated minerals. Additionally, altered samples shifted in δ18O space, reflecting the competing effects of water–mineral fractionation and mass fractionation due to the preferential escape of isotopically light water.
-
Internal conulariid structures unveiled using µCTAbstract An extensive sample of well-preserved conulariids from the Pennsylvanian of the North American Midcontinent (Texas and Oklahoma, USA) have been studied using X-ray micro-Computed Tomography (µCT) and have shown structures identified as longitudinal muscle bundles and a potential gastric cavity. These unequivocal structures appear in several specimens coming from different sites. Their preservation varies from a gastric cavity with muscle bundles in some individuals to only longitudinal muscle bundles in others. The muscle bundles fuse apically or medially, normally forming V-shaped pairs, and they extend along the theca/exoskeleton, parallel to the corner, towards the aperture. Longitudinal bundles have predominant perradial positions. Although there have been some articles on conulariid soft parts, most of them refer to relic soft parts. This is the first time that these structures are shown using µCT. Discovery of conulariid soft parts contributes to knowledge of metazoan evolutionary history.
-
The mineralogy and alteration history of the Yamato-type (CY) carbonaceous chondritesThe CY chondrites are a group of thermally metamorphosed carbonaceous chondrites. Although they share similarities with the CM and CI chondrites, their primary properties argue for a distinct classification. Previous studies have highlighted their isotopically heavy bulk compositions (δ17O = 10 ‰, δ18O = 21 ‰, Δ17O = 0 ‰) and exceptionally high sulphide abundances (10–30 vol%). In this work we explore their petrography and alteration history. The CYs accreted low abundances of chondrules (15–20 area%) with average apparent diameters slightly larger (∼320–340 µm) than the CM chondrites. In contrast to the CMs, the CYs record an early episode of brecciation prior to the main window of aqueous alteration. Subsequent fluid activity produced a range of alteration extents with both CY2 and CY1 chondrites documented. Phyllosilicate minerals in the CYs were a mix of serpentine and saponite (including occurrences of Na-saponite) with minor quantities of chlorite (within chondrules). An initial generation of Fe-sulphides formed by sulfidation of metal, and by precipitation from S-rich fluids. Three generations of carbonates are recognized, an early generation that infilled voids left by brecciation and co-precipitated with sulphide, a later generation that co-precipitated with magnetite and a final Fe-Mg-bearing generation which formed large (>100 µm) clasts. Only the first-generation carbonates are found in the CY2s, while the CY1s preserve all three generations. Phosphates occur as Ca-apatite or rarely as Mg-bearing apatite and have hydroxylapatite compositions, indicating low halogen activities in the alteration fluids. Refractory oxides (ilmenite and Cr-spinel) occur as precipitates adhering to the margins of phyllosilicates. They formed late in the alteration sequence and attest to oxidizing conditions. During the late-stages of aqueous alteration Fe-sulphides were replaced by magnetite. Thermal metamorphism (Stage II-IV: ∼300–750 °C) overprinted aqueous alteration leading to dehydration and recrystallization of the phyllosilicate matrix and the decomposition of some carbonate phases. Most Fe-sulphide grains survived heating without decomposition as initial partial decomposition from pyrrhotite to troilite under closed system conditions led to elevated ƒS2 gas and resulted in a stabilizing effect. Retrograde reactions between trapped S2 gas and metal/magnetite formed a final generation of Fe-sulphides. The survival of Fe-sulphides and their stochiometric troilite compositions are evidence for near-closed system heating. Analysis of organic matter by Raman spectroscopy supports an interpretation of short-duration heating (on the scale of minutes to days), at peak temperatures between 750 and 900 °C. Thus, an impact event was the most likely cause of metamorphic heating.
-
The Winchcombe meteorite, a unique and pristine witness from the outer solar systemDirect links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth’s water.
-
The Winchcombe meteorite—A regolith breccia from a rubble pile <scp>CM</scp> chondrite asteroidAbstract The Winchcombe meteorite is a CM chondrite breccia composed of eight distinct lithological units plus a cataclastic matrix. The degree of aqueous alteration varies between intensely altered CM2.0 and moderately altered CM2.6. Although no lithology dominates, three heavily altered rock types (CM2.1–2.3) represent >70 area%. Tochilinite–cronstedtite intergrowths (TCIs) are common in several lithologies. Their compositions can vary significantly, even within a single lithology, which can prevent a clear assessment of alteration extent if only TCI composition is considered. We suggest that this is due to early alteration under localized geochemical microenvironments creating a diversity of compositions and because later reprocessing was incomplete, leaving a record of the parent body's fluid history. In Winchcombe, the fragments of primary accretionary rock are held within a cataclastic matrix (~15 area%). This material is impact‐derived fallback debris. Its grain size and texture suggest that the disruption of the original parent asteroid responded by intergranular fracture at grain sizes <100 μm, while larger phases, such as whole chondrules, splintered apart. Re‐accretion formed a poorly lithified body. During atmospheric entry, the Winchcombe meteoroid broke apart with new fractures preferentially cutting through the weaker cataclastic matrix and separating the breccia into its component clasts. The strength of the cataclastic matrix imparts a control on the survival of CM chondrite meteoroids. Winchcombe's unweathered state and diversity of lithologies make it an ideal sample for exploring the geological history of the CM chondrite group.
-
Recovery and curation of the Winchcombe (<scp>CM2</scp>) meteoriteAbstract: The Winchcombe meteorite fell on February 28, 2021 and was the first recovered meteorite fall in the UK for 30 years, and the first UK carbonaceous chondrite. The meteorite was widely observed by meteor camera networks, doorbell cameras, and eyewitnesses, and 213.5 g (around 35% of the final recovered mass) was collected quickly—within 12 h—of its fall. It, therefore, represents an opportunity to study very pristine extra‐terrestrial material and requires appropriate careful curation. The meteorite fell in a narrow (600 m across) strewn field ~8.5 km long and oriented approximately east–west, with the largest single fragment at the farthest (east) end in the town of Winchcombe, Gloucestershire. Of the total known mass of 602 g, around 525 g is curated at the Natural History Museum, London. A sample analysis plan was devised within a month of the fall to enable scientists in the UK and beyond to quickly access and analyze fresh material. The sample is stored long term in a nitrogen atmosphere glove box. Preliminary macroscopic and electron microscopic examinations show it to be a CM2 chondrite, and despite an early search, no fragile minerals, such as halite, sulfur, etc., were observed.
-
Fossil micrometeorites from Monte dei Corvi: Searching for dust from the Veritas asteroid family and the utility of micrometeorites as a palaeoclimate proxyWe searched late Miocene sedimentary rocks in an attempt to recover fossil micrometeorites derived from the Veritas asteroid family. This study was motivated by the previous identification of a pronounced 3He peak (4-5x above background) within marine sediments with ages between ∼8.5–6.9 Ma ago (Montanari et al., 2017. GSA Bulletin, 129:1357–1376). We processed 118.9 kg of sediment from the Monte dei Corvi beach section (Italy), the global type-section for the Tortonian epoch (11.6–7.2 Ma). Samples were collected both before and within the 3He peak. Although a small number of iron-rich (I-type) fossil micrometeorites were recovered from each horizon studied (Ntotal = 20), there is no clear difference between the pre- and intra- 3He peak samples. All micrometeorites are compositionally similar, and three out of five horizons yielded similar abundances and particle sizes. Micrometeorites extracted from sediments at the base of the 3He peak were exclusively small (ø <75 µm), while micrometeorites extracted from sediments near the highest 3He values were relatively large (ø <270 µm). The recovered fossil micrometeorites are interpreted as samples of the background dust flux derived from metal-bearing chondritic asteroids. The presence of a 3He signature combined with the absence of fossil micrometeorites or extraterrestrial spinels (Boschi et al., 2019, Spec. Pap. Geol. Soc. Am. 542:383–391) unambiguously related to the Veritas event suggests that the Veritas family is composed of highly friable materials that rarely survive on the sea floor to become preserved in the geological record. Our data supports the existing hypothesis that the Veritas asteroid family is an aqueously altered carbonaceous chondrite parent body, one that contains minimal native metal grains or refractory Cr-spinels. The low yield of fossil micrometeorites at Monte dei Corvi is attributed to loss of particles by dissolution whilst they resided on the sea floor but also due to high sedimentation rates leading to dilution of the extraterrestrial dust flux at this site. As with other fossil micrometeorite collections (e.g. Cretaceous chalk [Suttle and Genge, EPSL, 476:132–142]) the I-type spherules have been altered since deposition. In most particles, both magnetite and wüstite remain intact but have been affected by solid state geochemical exchange, characterised by partial leaching of Ni, Co and Cr and implantation of Mn, Mg, Si and Al. In some particles Mn concentrations reach up to 16.6 wt%. Conversely, in some micrometeorites wüstite has been partially dissolved, or even replaced by calcite or ankerite. Finally, we observe evidence for wüstite recrystallisation, forming a second generation of magnetite. This process is suggested to occur by oxidation during residence on the seafloor and has implications for the use of fossil I-type micrometeorites as a potential proxy for probing Earth’s upper atmospheric composition (oxidative capacity) in the geological past. However, solutions to the limitations of post-depositional recrystallisation are suggested. Fossil I-type spherules remain a potential tool for palaeo-climatic studies.
-
Detection and Quantification of Extraterrestrial Platinum Group Element Alloy Micronuggets from Archean Impactite Deposits by Low-Voltage Scanning Electron Microscopy/Energy-Dispersive X-ray SpectrometryAbstract Rare, heterogeneously composed platinum group element alloy micronuggets (PGNs) occur in primitive meteorites, micrometeorites, and terrestrial impactite deposits. To gain insight into the nature of these phases, we developed a workflow for the characterization of PGNs using modern scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry at a low accelerating voltage of 6 kV. Automated feature analysis—a combination of morphological image analysis and elemental analysis with stage control—allowed us to detect PGNs down to 200 nm over a relatively large analysis area of 53 mm2 with a conventional silicon drift detector (SDD). Hyperspectral imaging with a high-sensitivity, annular SDD can be performed at low beam current (∼100 pA) which improves the SEM image resolution and minimizes hydrocarbon contamination. The severe overlapping peaks of the platinum group element L and M line families at 2–3 keV and the Fe and Ni L line families at &lt;1 keV can be resolved by peak deconvolution. Quantitative elemental analysis can be performed at a spatial resolution of &lt;80 nm; however, the results are affected by background subtraction errors for the Fe L line family. Furthermore, the inaccuracy of the matrix correction coefficients may influence standards-based quantification with pure element reference samples.
-
Two new sympatric species of the pirate spider genus Ero C.L. Koch, 1836 from the cloud forest of Saint Helena Island, South Atlantic Ocean (Araneae: Mimetidae)A remarkable morphologically and genetically distinct species of the genus Ero C.L. Koch, 1836 is described based on both sexes from the cloud forest of the island of Saint Helena: Ero lizae sp. nov. Another new species, Ero natashae sp. nov., is also described on the basis of morphological differences in the male and female genitalia. Both species were initially reported a single species, Ero aphana (Walckenaer, 1802), from the island by Unzicker (1977).
-
Unprecedented frequency of mitochondrial introns in colonial bilateriansAbstract Animal mitogenomes are typically devoid of introns. Here, we report the largest number of mitochondrial introns ever recorded from bilaterian animals. Mitochondrial introns were identified for the first time from the phylum Bryozoa. They were found in four species from three families (Order Cheilostomatida). A total of eight introns were found in the complete mitogenome of Exechonella vieirai, and five, 17 and 18 introns were found in the partial mitogenomes of Parantropora penelope, Discoporella cookae and Cupuladria biporosa, respectively. Intron-encoded protein domains reverse transcriptase and intron maturase (RVT-IM) were identified in all species. Introns in E. vieirai and P. penelope had conserved Group II intron ribozyme domains V and VI. Conserved domains were lacking from introns in D. cookae and C. biporosa, preventing their further categorization. Putative origins of metazoan introns were explored in a phylogenetic context, using an up-to-date alignment of mitochondrial RVT-IM domains. Results confirmed previous findings of multiple origins of annelid, placozoan and sponge RVT-IM domains and provided evidence for common intron donor sources across metazoan phyla. Our results corroborate growing evidence that some metazoans with regenerative abilities (i.e. placozoans, sponges, annelids and bryozoans) are susceptible to intron integration, most likely via horizontal gene transfer.
-
Evaluation of genome skimming to detect and characterise human and livestock helminthsThe identification of gastrointestinal helminth infections of humans and livestock almost exclusively relies on the detection of eggs or larvae in faeces, followed by manual counting and morphological characterisation to differentiate species using microscopy-based techniques. However, molecular approaches based on the detection and quantification of parasite DNA are becoming more prevalent, increasing the sensitivity, specificity and throughput of diagnostic assays. High-throughput sequencing, from single PCR targets through to the analysis of whole genomes, offers significant promise towards providing information-rich data that may add value beyond traditional and conventional molecular approaches; however, thus far, its utility has not been fully explored to detect helminths in faecal samples. In this study, low-depth whole genome sequencing, i.e. genome skimming, has been applied to detect and characterise helminth diversity in a set of helminth-infected human and livestock faecal material. The strengths and limitations of this approach are evaluated using three methods to characterise and differentiate metagenomic sequencing data based on (i) mapping to whole mitochondrial genomes, (ii) whole genome assemblies, and (iii) a comprehensive internal transcribed spacer 2 (ITS2) database, together with validation using quantitative PCR (qPCR). Our analyses suggest that genome skimming can successfully identify most single and multi-species infections reported by qPCR and can provide sufficient coverage within some samples to resolve consensus mitochondrial genomes, thus facilitating phylogenetic analyses of selected genera, e.g. Ascaris spp. Key to this approach is both the availability and integrity of helminth reference genomes, some of which are currently contaminated with bacterial and host sequences. The success of genome skimming of faecal DNA is dependent on the availability of vouchered sequences of helminths spanning both taxonomic and geographic diversity, together with methods to detect or amplify minute quantities of parasite nucleic acids in mixed samples.
-
Diversity and Phylogeny of Novel Cord-Forming Fungi from BorneoCord-forming (CF) fungi are found worldwide; however, tropical CF fungi are poorly documented. They play an essential role in forest ecosystems by interconnecting nutrient resources and aiding in the decomposition of plant matter and woody litter. CF fungi samples were collected from two forest conservation sites in the Sabah region of Malaysian Borneo. Sequencing and phylogenetic analysis of the ribosomal rRNA gene array 18S to 28S region from cords collected placed all of the collected specimens in Agaricomycetes (Basidiomycetes), specifically within the orders Trechisporales, Phallales, Hymenochaetales, Polyporales, and Agaricales. Comparison of the cord-derived sequences against GenBank and UNITE sequence databases, as well as phylogenetic analyses, revealed they were all novel sequences types. Many of these novel lineages were found to be closely related to other basidiomycetes commonly found in tropical forests, suggesting a large undiscovered tropical fungal diversity in Borneo that has been detected independently of sampling fruiting bodies. We show how these sequence types relate to the morphologies of the cords from which they were sampled. We also highlight how rapid, small-scale sampling can be a useful tool as an easy and relatively unbiased way of collecting data on cord-forming fungi in difficult-to-access, complex forest environments, independently of locating and sampling sporophores.
-
Revision of the World Species of Megaphragma Timberlake (Hymenoptera: Trichogrammatidae)Megaphragma species are important models for basic organismal research, and many are potential biological control agents. We present the first extensive revision of species of the genus Megaphragma based on morphological and molecular data. Our revision includes all previously described species, 6 of which are synonymized, and 22 of which are described here as new. We also provide the first key to all species of the genus and reconstruct their phylogeny based on 28S and CO1 molecular markers. The following species are synonymized with M. longiciliatum Subba Rao: M. aligarhensis Yousuf and Shafee syn. nov.; M. amalphitanum Viggiani syn. nov.; M. decochaetum Lin syn. nov.; M. magniclava Yousuf and Shafee syn. nov.; M. shimalianum Hayat syn. nov. M. anomalifuniculi Yuan and Lou syn. nov. is synonymized with M. polychaetum Lin. The following species are described as new: M. antecessor Polaszek and Fusu sp. nov.; M. breviclavum Polaszek and Fusu sp. nov.; M. chienleei Polaszek and Fusu sp. nov.; M. cockerilli Polaszek and Fusu sp. nov.; M. digitatum Polaszek and Fusu sp. nov.; M. fanenitrakely Polaszek and Fusu sp. nov.; M. funiculatum Fusu, Polaszek, and Viggiani sp. nov.; M. giraulti Viggiani, Fusu, and Polaszek sp. nov.; M. hansoni Polaszek, Fusu, and Viggiani sp. nov.; M. kinuthiae Polaszek, Fusu, and Viggiani sp. nov.; M. liui Polaszek and Fusu sp. nov.; M. momookherjeeae Polaszek and Fusu sp. nov.; M. nowickii Polaszek, Fusu, and Viggiani sp. nov.; M. noyesi Polaszek and Fusu sp. nov.; M. pintoi Viggiani sp. nov.; M. polilovi Polaszek, Fusu, and Viggiani sp. nov.; M. rivelloi Viggiani sp. nov.; M. tamoi Polaszek, Fusu, and Viggiani sp. nov.; M. tridens Fusu, and Polaszek sp. nov.; M. uniclavum Polaszek and Fusu sp. nov.; M. vanlentereni Polaszek and Fusu sp. nov.; M. viggianii Fusu, Polaszek, and Polilov sp. nov.
-
Crystal structure and investigation of Bi2TeO6·nH2O (0 ≤ n ≤ 2/3): natural and synthetic montaniteThe crystal structure of montanite has been determined using single-crystal X-ray diffraction on a synthetic sample, supported by powder X-ray diffraction (PXRD), electron microprobe analysis (EPMA) and thermogravimetric analyses (TGA). Montanite was first described in 1868 as Bi2TeO6·nH2O (0 ≤ n ≤ 2/3). The determination of the crystal structure of synthetic montanite (refined composition Bi2TeO6·0.22H2O has led to the reassignment of the formula to Bi2TeO6·0.22H2O where 0 ≤ n ≤ 2∕3 rather than the commonly reported Bi2TeO6·2H2O. This change has been accepted by the IMA–CNMNC, Proposal 22-A. The PXRD pattern simulated from the crystal structure of synthetic montanite is a satisfactory match for PXRD scans collected on both historical and recent natural samples, showing their equivalence. Two specimens attributed to the original discoverer of montanite (Frederick A. Genth) from the cotype localities (Highland Mining District, Montana and David Beck’s mine, North Carolina, USA) have been designated as neotypes. Montanite crystallises in space group P6, with the unit-cell parameters a = 9.1195(14) Å, c = 5.5694(8) Å, V = 401.13(14) Å3, and three formula units in the unit cell. The crystal structure of montanite is formed from a framework of BiOn and TeO6 polyhedra. Half of the Bi3+ and all of the Te+ cations are coordinated by six oxygen atoms in trigonal-prismatic arrangements (the first example of this configuration reported for Te6+, while the remaining Bi3+ cations are coordinated by seven O sites. The H2O groups in montanite are structurally incorporated into the network of cavities formed by the three-dimensional framework, with other cavity space occupied by the stereoactive 6s2 lone pair of Bi3+ cations. While evidence for a supercell was observed in synthetic montanite, the subcell refinement of montanite adequately indexes all reflections in the PXRD patterns observed in all natural montanite samples analysed in this study, verifying the identity of montanite as a mineral.