• Anatomy of Rhinochelys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids

      Evers, SW; Benson, RBJ; Barrett, PM (PeerJ Inc., 2019-05-01)
      Knowledge of the early evolution of sea turtles (Chelonioidea) has been limited by conflicting phylogenetic hypotheses resulting from sparse taxon sampling and a superficial understanding of the morphology of key taxa. This limits our understanding of evolutionary adaptation to marine life in turtles, and in amniotes more broadly. One problematic group are the protostegids, Early–Late Cretaceous marine turtles that have been hypothesised to be either stem-cryptodires, stem-chelonioids, or crown-chelonioids. Different phylogenetic hypotheses for protostegids suggest different answers to key questions, including (1) the number of transitions to marine life in turtles, (2) the age of the chelonioid crown-group, and (3) patterns of skeletal evolution during marine adaptation. We present a detailed anatomical study of one of the earliest protostegids, Rhinochelys pulchriceps from the early Late Cretaceous of Europe, using high-resolution mCT. We synonymise all previously named European species and document the variation seen among them. A phylogeny of turtles with increased chelonioid taxon sampling and revised postcranial characters is provided, recovering protostegids as stem-chelonioids. Our results imply a mid Early Cretaceous origin of total-group chelonioids and an early Late Cretaceous age for crown-chelonioids, which may inform molecular clock analyses in future. Specialisations of the chelonioid flipper evolved in a stepwise-fashion, with innovations clustered into pulses at the origin of total-group chelonioids, and subsequently among dermochelyids, crown-cheloniids, and gigantic protostegids from the Late Cretaceous.
    • The cranial morphology of Tanystropheus hydroides (Tanystropheidae, Archosauromorpha) as revealed by synchrotron microtomography

      Spiekman, Stephan NF; Neenan, James M; Fraser, Nicholas C; Fernandez, Vincent; Rieppel, Olivier; Nosotti, Stefania; Scheyer, Torsten M (PeerJ, 2020-11-20)
      The postcranial morphology of the extremely long-necked Tanystropheus hydroides is well-known, but observations of skull morphology were previously limited due to compression of the known specimens. Here we provide a detailed description of the skull of PIMUZ T 2790, including a partial endocast and endosseous labyrinth, based on synchrotron microtomographic data, and compare its morphology to that of other early Archosauromorpha. In many features, such as the wide and flattened snout and the configuration of the temporal and palatal regions, Tanystropheus hydroides differs strongly from other early archosauromorphs. The braincase possesses a combination of derived archosaur traits, such as the presence of a laterosphenoid and the ossification of the lateral wall of the braincase, but also differs from archosauriforms in the morphology of the ventral ramus of the opisthotic, the horizontal orientation of the parabasisphenoid, and the absence of a clearly defined crista prootica. Tanystropheus hydroides was a ram-feeder that likely caught its prey through a laterally directed snapping bite. Although the cranial morphology of other archosauromorph lineages is relatively well-represented, the skulls of most tanystropheid taxa remain poorly understood due to compressed and often fragmentary specimens. The recent descriptions of the skulls of Macrocnemus bassanii and now Tanystropheus hydroides reveal a large cranial disparity in the clade, reflecting wide ecological diversity, and highlighting the importance of non-archosauriform Archosauromorpha to both terrestrial and aquatic ecosystems during the Triassic.
    • Ngwevu intloko: a new early sauropodomorph dinosaur from the Lower Jurassic Elliot Formation of South Africa and comments on cranial ontogeny in Massospondylus carinatus

      Chapelle, KEJ; Barrett, PM; Botha, J; Choiniere, JN (PeerJ Inc., 2019-08-05)
      Our knowledge of Early Jurassic palaeobiodiversity in the upper Elliot Formation of South Africa has increased markedly in recent years with the discovery of new fossils, re-assessments of previously collected material and a better understanding of Stormberg Group stratigraphy. Here, Ngwevu intloko, a new genus of upper Elliot basal sauropodomorph is named on the basis of a complete skull and partial skeleton (BP/1/4779) previously assigned to Massospondylus carinatus. It can be distinguished from all other basal sauropodomorphs by a combination of 16 cranial and six postcranial characters. The new species is compared to a small ontogenetic series of M. carinatus as well as to a range of closely related taxa. Taphonomic deformation, sexual dimorphism and ontogeny are rejected as possible explanations for the morphological differences present between BP/1/4779 and other taxa. Osteohistological examination reveals that BP/1/4779 had nearly reached adult size at the time of its death at a minimum age of 10 years.
    • The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus , and the use of basal exemplifiers in phylogenetic analysis

      Raven, TJ; Maidment, SC (PeerJ, 2018-03-20)
      The first African dinosaur to be discovered, Paranthodon africanus was found in 1845 in the Lower Cretaceous of South Africa. Taxonomically assigned to numerous groups since discovery, in 1981 it was described as a stegosaur, a group of armoured ornithischian dinosaurs characterised by bizarre plates and spines extending from the neck to the tail. This assignment has been subsequently accepted. The type material consists of a premaxilla, maxilla, a nasal, and a vertebra, and contains no synapomorphies of Stegosauria. Several features of the maxilla and dentition are reminiscent of Ankylosauria, the sister-taxon to Stegosauria, and the premaxilla appears superficially similar to that of some ornithopods. The vertebral material has never been described, and since the last description of the specimen, there have been numerous discoveries of thyreophoran material potentially pertinent to establishing the taxonomic assignment of the specimen. An investigation of the taxonomic and systematic position of Paranthodon is therefore warranted. This study provides a detailed re-description, including the first description of the vertebra. Numerous phylogenetic analyses demonstrate that the systematic position of Paranthodon is highly labile and subject to change depending on which exemplifier for the clade Stegosauria is used. The results indicate that the use of a basal exemplifier may not result in the correct phylogenetic position of a taxon being recovered if the taxon displays character states more derived than those of the basal exemplifier, and we recommend the use, minimally, of one basal and one derived exemplifier per clade. Paranthodon is most robustly recovered as a stegosaur in our analyses, meaning it is one of the youngest and southernmost stegosaurs.