Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District
Name:
Fitzpayne et al. 2018 - Tl ...
Size:
6.283Mb
Format:
PDF
Description:
Published/publisher's PDF version
Name:
minerals-373632-supplementary.xlsx
Size:
4.345Mb
Format:
Microsoft
Excel 2007
Description:
Supporting information
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to
this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue date
26/11/2018Subject Terms
thalliumisotope geochemistry
Bingham Canyon
porphyry Cu-Au-Mo
hydrothermal alteration
Metadata
Show full item recordAbstract
The Bingham Canyon porphyry deposit is one of the world’s largest Cu-Mo-Au resources. Elevated concentrations of thallium (Tl) compared to average continental crust have been found in some brecciated and igneous samples in this area, which likely result from mobilization of Tl by relatively low temperature hydrothermal fluids. The Tl-enrichment at Bingham Canyon therefore provides an opportunity to investigate if Tl isotope ratios reflect hydrothermal enrichment and whether there are systematic Tl isotope fractionations that could provide an exploration tool. We present a reconnaissance study of nineteen samples spanning a range of lithologies from the Bingham district which were analysed for their Tl content and Tl isotope ratios, reported as parts per ten thousand (ε205Tl) relative to the NIST SRM997 international standard. The range of ε205Tl reported in this study (−16.4 to +7.2) is the largest observed in a hydrothermal ore deposit to date. Unbrecciated samples collected relatively proximal to the Bingham Canyon porphyry system have ε205Tl of −4.2 to +0.9, similar to observations in a previous study of porphyry deposits. This relatively narrow range suggests that high-temperature (>300 °C) hydrothermal alteration does not result in significant Tl isotope fractionation. However, two samples ~3–4 km away from Bingham Canyon have higher ε205Tl values (+1.3 and +7.2), and samples from more distal (~7 km) disseminated gold deposits at Melco and Barneys Canyon display an even wider range in ε205Tl (−16.4 to +6.0). The observation of large positive and negative excursions in ε205Tl relative to the mantle value (ε205Tl = −2.0 ± 1.0) contrasts with previous investigations of hydrothermal systems. Samples displaying the most extreme positive and negative ε205Tl values also contain elevated concentrations of Tl-Sb-As. Furthermore, with the exception of one sample, all of the Tl isotopic anomalies occur in hydrothermal breccia samples. This suggests that ε205Tl excursions are most extreme during the migration of low-temperature hydrothermal fluids potentially related to sediment-hosted gold mineralization. Future investigation to determine the host phase(s) for Tl in breccias displaying both chalcophile element enrichment and ε205Tl excursions can potentially provide new information about hydrothermal fluid composition and could be used to locate sites for future porphyry exploration.Citation
Fitzpayne, A., J. Prytulak, et al. (2018). "Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District." Minerals 8(12): 548.Publisher
MDPI AGJournal
MineralsType
Journal ArticleItem Description
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article.NHM Repository
ISSN
2075-163XEISSN
2075-163Xae974a485f413a2113503eed53cd6c53
10.3390/min8120548
Scopus Count
Collections