Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California
Name:
Georgieva et al. 2019 - Fossil ...
Size:
10.07Mb
Format:
PDF
Description:
Published/publisher's PDF version
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to
this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Georgieva, MPaull, CK
Little, CTS
McGann, M
Sahy, D
Condon, D
Lundsten, L
Pewsey, J
Caress, DW
Vrijenhoek, RC
Issue date
2019-03-19Submitted date
2019-03-19Subject Terms
tubewormlast glacial maximum
gas hydrate
vesicomyidae
Annelida
paleobiology
eastern Pacific
methane seep
Metadata
Show full item recordAbstract
Multibeam bathymetric mapping of the Santa Monica Basin in the eastern Pacific has revealed the existence of a number of elevated bathymetric features, or mounds, harboring cold seep communities. During 2013–2014, mounds at 600 m water depth were observed for the first time and sampled by Monterey Bay Aquarium Research Institute’s ROV Doc Ricketts. Active cold seeps were found, but surprisingly one of these mounds was characterized by massive deposits composed of fossil serpulid worm tubes (Annelida: Serpulidae) exhibiting various states of mineralization by authigenic carbonate. No living serpulids with equivalent tube morphologies were found at the site; hence the mound was termed “Fossil Hill.” In the present study, the identity of the fossil serpulids and associated fossil community, the ages of fossils and authigenic carbonates, the formation of the fossil serpulid aggregation, and the geological structure of the mound are explored. Results indicate that the tubes were most likely made by a deep-sea serpulid lineage, with radiocarbon dating suggesting that they have a very recent origin during the Late Pleistocene, specifically to the Last Glacial Maximum 20,000 years ago. Additional U-Th analyses of authigenic carbonates mostly corroborate the radiocarbon dates, and also indicate that seepage was occurring while the tubes were being formed. We also document similar, older deposits along the approximate trajectory of the San Pedro Basin Fault. We suggest that the serpulid tube facies formed in situ, and that the vast aggregation of these tubes at Fossil Hill is likely due to a combination of optimal physical environmental conditions and chemosynthetic production, which may have been particularly intense as a result of sea-level lowstand during the Last Glacial Maximum.Citation
Georgieva MN, Paull CK, Little CTS, McGann M, Sahy D, Condon D, Lundsten L, Pewsey J, Caress DW and Vrijenhoek RC (2019) Discovery of an Extensive Deep-Sea Fossil Serpulid Reef Associated With a Cold Seep, Santa Monica Basin, California. Front. Mar. Sci. 6:115. doi: 10.3389/fmars.2019.00115Publisher
Frontiers MediaJournal
Frontiers in Marine ScienceType
Journal ArticleItem Description
Copyright © 2019 Georgieva, Paull, Little, McGann, Sahy, Condon, Lundsten, Pewsey, Caress and Vrijenhoek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. The attached file is the published version of the article.NHM Repository
ISSN
2296-7745ae974a485f413a2113503eed53cd6c53
10.3389/fmars.2019.00115
Scopus Count
Collections