Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets
Name:
Assessment of the genetic ...
Size:
607.8Kb
Format:
PDF
Description:
Published/publisher’s pdf
Name:
13071_2012_725_MOESM1_ESM.pdf
Size:
110.4Kb
Format:
PDF
Description:
Supporting information
Name:
13071_2012_725_MOESM2_ESM.pdf
Size:
86.21Kb
Format:
PDF
Description:
Supporting information
Name:
13071_2012_725_MOESM3_ESM.jpeg
Size:
61.37Kb
Format:
JPEG image
Description:
Supporting information
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to
this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue date
2012-10-30Submitted date
2020-03-04Subject Terms
Dictyocaulus (Nematoda: Strongylida)Lungworms
Dictyocaulosis
Cattle
Deer
Mitochondrial genome
Systematics
Epidemiology
Metadata
Show full item recordAbstract
Background: Dictyocaulus species are strongylid nematodes of major veterinary significance in ruminants, such as cattle and cervids, and cause serious bronchitis or pneumonia (dictyocaulosis or “husk”). There has been ongoing controversy surrounding the validity of some Dictyocaulus species and their host specificity. Here, we sequenced and characterized the mitochondrial (mt) genomes of Dictyocaulus viviparus (from Bos taurus) with Dictyocaulus sp. cf. eckerti from red deer (Cervus elaphus), used mt datasets to assess the genetic relationship between these and related parasites, and predicted markers for future population genetic or molecular epidemiological studies. Methods: The mt genomes were amplified from single adult males of D. viviparus and Dictyocaulus sp. cf. eckerti (from red deer) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), also employing data for other strongylids for comparative purposes. Results: The circular mt genomes were 13,310 bp (D. viviparus) and 13,296 bp (Dictyocaulus sp. cf. eckerti) in size, and each contained 12 protein-encoding, 22 transfer RNA and 2 ribosomal RNA genes, consistent with other strongylid nematodes sequenced to date. Sliding window analysis identified genes with high or low levels of nucleotide diversity between the mt genomes. At the predicted mt proteomic level, there was an overall sequence difference of 34.5% between D. viviparus and Dictyocaulus sp. cf. eckerti, and amino acid sequence variation within each species was usually much lower than differences between species. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that both D. viviparus and Dictyocaulus sp. cf. eckerti were closely related, and grouped to the exclusion of selected members of the superfamilies Metastrongyloidea, Trichostrongyloidea, Ancylostomatoidea and Strongyloidea. Conclusions: Consistent with previous findings for nuclear ribosomal DNA sequence data, the present analyses indicate that Dictyocaulus sp. cf. eckerti (red deer) and D. viviparus are separate species. Barcodes in the two mt genomes and proteomes should serve as markers for future studies of the population genetics and/or epidemiology of these and related species of Dictyocaulus.Citation
Gasser, R.B., Jabbar, A., Mohandas, N. et al. Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets. Parasites Vectors 5, 241 (2012). https://doi.org/10.1186/1756-3305-5-241Publisher
Springer Science and Business Media LLCJournal
Parasites & VectorsType
Journal ArticleItem Description
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The attached file is the published pdf.NHM Repository
EISSN
1756-3305ae974a485f413a2113503eed53cd6c53
10.1186/1756-3305-5-241
Scopus Count
Collections