Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda)
Name:
Using 454 technology for long-PCR ...
Size:
957.5Kb
Format:
PDF
Description:
Published/publisher's PDF version
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to
this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue date
2008-01-11Submitted date
2020-04-06Subject Terms
Genomic Survey SequenceHaemonchus Contortus
Infer Amino Acid Sequence
Complex Secondary Structure
Strongylid Nematode
Metadata
Show full item recordAbstract
Background: Mitochondrial (mt) genomes represent a rich source of molecular markers for a range of applications, including population genetics, systematics, epidemiology and ecology. In the present study, we used 454 technology (or the GS20, massively parallel picolitre reactor platform) to determine the complete mt genome of Haemonchus contortus (Nematoda: Trichostrongylidae), a parasite of substantial agricultural, veterinary and economic significance. We validate this approach by comparison with mt sequences from publicly available expressed sequence tag (EST) and genomic survey sequence (GSS) data sets. Results: The complete mt genome of Haemonchus contortus was sequenced directly from longPCR amplified template utilizing genomic DNA (~20–40 ng) from a single adult male using 454 technology. A single contig was assembled and compared against mt sequences mined from publicly available EST (NemBLAST) and GSS datasets. The comparison demonstrated that the 454 technology platform is reliable for the sequencing of AT-rich mt genomes from nematodes. The mt genome sequenced for Haemonchus contortus was 14,055 bp in length and was highly AT-rich (78.1%). In accordance with other chromadorean nematodes studied to date, the mt genome of H. contortus contained 36 genes (12 protein coding, 22 tRNAs, rrnL and rrnS) and was similar in structure, size and gene arrangement to those characterized previously for members of the Strongylida. Conclusion: The present study demonstrates the utility of 454 technology for the rapid determination of mt genome sequences from tiny amounts of DNA and reveals a wealth of mt genomic data in current databases available for mining. This approach provides a novel platform for high-throughput sequencing of mt genomes from nematodes and other organisms.Citation
Jex, A.R., Hu, M., Littlewood, D.T.J. et al. Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). BMC Genomics 9, 11 (2008). https://doi.org/10.1186/1471-2164-9-11Publisher
Springer Science and Business Media LLCJournal
BMC GenomicsType
Journal ArticleItem Description
© 2008 Jex et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.NHM Repository
ISSN
1471-2164ae974a485f413a2113503eed53cd6c53
10.1186/1471-2164-9-11
Scopus Count
Collections