Show simple item record

dc.contributor.authorHofer, IMJ
dc.contributor.authorHart, AJ
dc.contributor.authorMartín-Vega, D
dc.contributor.authorHall, MJR
dc.date.accessioned2020-09-08T08:02:02Z
dc.date.available2020-09-08T08:02:02Z
dc.date.issued2019-10-30
dc.date.submitted2020-09-07
dc.identifier.citationInes M.J. Hofer, Andrew J. Hart, Daniel Martín-Vega, Martin J.R. Hall, Estimating crime scene temperatures from nearby meteorological station data, Forensic Science International, Volume 306, 2020, 110028, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2019.110028.en_US
dc.identifier.issn0379-0738
dc.identifier.doihttps://doi.org/10.1016/j.forsciint.2019.110028
dc.identifier.urihttp://hdl.handle.net/10141/622811
dc.description.abstractThe importance of temperature data in minimum postmortem interval (minPMI) estimations in criminal investigations is well known. To maximise the accuracy of minPMI estimations, it is imperative to investigate the different components involved in temperature modelling, such as the duration of temperature data logger placement at the crime scene and choice of nearest weather station to compare the crime scene data to. Currently, there is no standardised practice on how long to leave the temperature data logger at the crime scene and the effects of varying logger duration are little known. The choice of the nearest weather station is usually made based on availability and accessibility of data from weather stations in the crime scene vicinity. However, there are no guidelines on what to look for to maximise the comparability of weather station and crime scene temperatures. Linear regression analysis of scene data with data from weather stations with varying time intervals, distances, altitudes and microclimates showed the greatest goodness of fit (R2), i.e. the highest compatibility between datasets, after 4–10 days. However, there was no significant improvement in estimation of crime scene temperatures beyond a 5-day regression period. The smaller the distance between scene and weather station and the higher the similarity in environment, such as altitude and geographical area, resulted in greater compatibility between datasets. Overall, the study demonstrated the complexity of choosing the most comparable weather station to the crime scene, especially because of a high variation in seasonal temperature and numerous influencing factors such as geographical location, urban ‘heat island effect’ and microclimates. Despite subtle differences, for both urban and rural areas an optimal data fit was generally reached after about five consecutive days within a radius of up to 30 km of the ‘crime scene’. With increasing distance and differing altitudes, a lower overall data fit was observed, and a diminishing increase in R2 values was reached after 4–10 consecutive days. These results demonstrate the need for caution regarding distances and climate differences when using weather station data for retrospective regression analyses for estimating temperatures at crime scenes. However, the estimates of scene temperatures from regression analysis were better than simply using the temperatures from the nearest weather station. This study provides recommendations for data logging duration of operation, and a baseline for further research into producing standard guidelines for increasing the accuracy of minPMI estimations and, ultimately, greater robustness of forensic entomology evidence in court.en_US
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rightsclosedAccessen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleEstimating crime scene temperatures from nearby meteorological station dataen_US
dc.typeJournal Articleen_US
dc.identifier.journalForensic Science Internationalen_US
dc.identifier.volume306en_US
dc.identifier.startpage110028 - 110028en_US
pubs.organisational-group/Natural History Museum
pubs.organisational-group/Natural History Museum/Science Group
pubs.organisational-group/Natural History Museum/Science Group/Functional groups
pubs.organisational-group/Natural History Museum/Science Group/Functional groups/Research
pubs.organisational-group/Natural History Museum/Science Group/Functional groups/Research/LS Research
pubs.organisational-group/Natural History Museum/Science Group/Life Sciences
pubs.organisational-group/Natural History Museum/Science Group/Life Sciences/Parasites and Vectors
pubs.organisational-group/Natural History Museum/Science Group/Life Sciences/Parasites and Vectors/Parasites and Vectors - Research
dc.embargoNot knownen_US
elements.import.authorHofer, IMJen_US
elements.import.authorHart, AJen_US
elements.import.authorMartín-Vega, Den_US
elements.import.authorHall, MJRen_US
dc.description.nhmThe attached document is the authors’ final accepted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it.en_US
dc.description.nhmNHM Repository
dc.subject.nhmTemperature modellingen_US
dc.subject.nhmMinimum post-mortem intervalen_US
dc.subject.nhmMicro-climateen_US
dc.subject.nhmForensic ecologyen_US
dc.subject.nhmTemperature dataloggeren_US


Files in this item

Thumbnail
Name:
2020-09-07 - Hofer et al - Final ...
Size:
685.6Kb
Format:
PDF
Description:
Accepted/final draft post-refe ...

This item appears in the following Collection(s)

Show simple item record

closedAccess
Except where otherwise noted, this item's license is described as closedAccess