The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens
Name:
The Development and Neuronal ...
Size:
2.984Mb
Format:
PDF
Description:
Published version
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to
this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue date
2021-06-28
Metadata
Show full item recordAbstract
Synopsis - Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.Citation
Hugh F Carter, Jeffrey R Thompson, Maurice R Elphick, Paola Oliveri, The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens, Integrative and Comparative Biology, Volume 61, Issue 2, August 2021, Pages 337–351, https://doi.org/10.1093/icb/icab103Publisher
Oxford University Press (OUP)Type
Journal ArticleItem Description
Copyright © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The linked file is the published version of the article.NHM Repository
ISSN
1540-7063EISSN
1557-7023ae974a485f413a2113503eed53cd6c53
10.1093/icb/icab103
Scopus Count
Collections